Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Two-Photon Microscopy Of Nanoparticles And Biotissues, Judith Noemi Rivera Jan 2013

Two-Photon Microscopy Of Nanoparticles And Biotissues, Judith Noemi Rivera

Open Access Theses & Dissertations

Biomedical Imaging is an important tool in medical research and clinical practice. From understanding the fundamental processes involved in our biological makeup to its use in diagnostics in helping determine what ails us, the advancements in imaging and microscopy have helped shape our view of the world and nature. Microscopy in particular is often used to study the smallest of cells and their dynamical properties while attempting to minimally change the sample being studied. My research objective is largely divided into two parts. The first part consists of designing a video-rate raster scanning two-photon microscope that is faster than current …


Surface Plasmon Polaritons And Waveguide Modes At Structured And Inhomogeneous Surfaces, Javier Polanco Jan 2013

Surface Plasmon Polaritons And Waveguide Modes At Structured And Inhomogeneous Surfaces, Javier Polanco

Open Access Theses & Dissertations

In chapter 1, properties of a p-polarized surface plasmon polariton are studied, propagating circumferentially around a portion of a cylindrical interface between vacuum and a metal, a situation investigated earlier by M. V. Berry (J. Phys. A: Math. Gen. 8, (1975) 1952). When the metal is convex toward the vacuum this mode is radiative and consequently is attenuated as it propagates on the cylindrical surface. An approximate analytic solution of the dispersion relation for this wave is obtained by an approach different from the one used by Berry, and plots of the real and imaginary parts of its wave number …


Structural, Optical And Electrical Properties Of Yttrium-Doped Hafnium Oxide Nanocrystalline Thin Films, Abhilash Kongu Jan 2013

Structural, Optical And Electrical Properties Of Yttrium-Doped Hafnium Oxide Nanocrystalline Thin Films, Abhilash Kongu

Open Access Theses & Dissertations

Hafnium oxide (HfO2) has emerged as the most promising high-k dielectric for Metal-Oxide-Semiconductor (MOS) devices and has been highlighted as the most suitable dielectric materials to replace silicon oxide because of its comprehensive performance. In the present research, yttrium-doped HfO2 (YDH) thin films were fabricated using RF magnetron sputter deposition onto Si (100) and quartz with a variable thickness. Cross-sectional scanning electron microscopy coupled with Filmetrics revealed that film thickness values range from 700 A° to 7500 A°. Electrical properties such as AC Resistivity and current-voltage (I-V) characteristics of YDH films were studied. YDH films that were relatively thin (<1500 A°) crystallized in monoclinic phase while thicker films crystallized in cubic phase. The band gap (Eg) of the films was calculated from the optical measurements. The band gap was found to be ∼5.60 eV for monoclinic while it is ∼6.05 eV for cubic phase of YDH films. Frequency dependence of the electrical resistivity (ρac) and the total conductivity of the films were measured. Resistivity decreased (by three orders of magnitude) with increasing frequency from 100 Hz to 1 MHz, attributed due to the hopping mechanism in YDH films. Whereas, while ρac∼1Ω-m at low frequencies (100 Hz), it decreased to ∼ 104 Ω-cm at higher frequencies (1 MHz). Aluminum (Al) metal electrodes were deposited to fabricate a thin film capacitor with YDH layer as dielectric film thereby employing Al-YDH-Si capacitor structure. The results indicate that the capacitance of the films decrease with increasing film thickness. A detailed analysis of the electrical characteristics of YDH films is presented.


Crystal Structure, Phase, And Optical Properties Of Yttrium-Doped Hafnium Oxide Nanocrystalline Thin Films, Alejandro Ortega Jan 2013

Crystal Structure, Phase, And Optical Properties Of Yttrium-Doped Hafnium Oxide Nanocrystalline Thin Films, Alejandro Ortega

Open Access Theses & Dissertations

Yttrium-doped hafnium oxide (YDH) nanocrystalline films were produced by sputter-deposition at various substrate times and temperatures, to produce YDH films in a wide range of thicknesses, dYDH∼25 to 1100 nm. The deposition was made onto optical grade quartz and sapphire substrates. Samples deposited on sapphire were subject to post-deposition annealing (PDA) at various times (3-24 hr) and temperatures (1100 - 1500 °C). The effect of d[special characters omitted]YDH on the crystal structure, surface/interface morphology and optical properties of YDH films was investigated. X-ray diffraction analyses revealed the formation of monoclinic phase for relatively thin films (<150nm). The evolution towards stabilized cubic phase with increasing dYDH [special characters omitted]is observed. The scanning electron microscopy results indicate the dense, columnar structure of YDH films as a function of dYDH. Spectrophotometry analyses indicate that the grown YDH films are transparent and exhibit interference fringes. The band gap was found to be ∼ 5.60 eV for monoclinic YDH films while distinct separation and an increase in band gap to 6.03 eV is evident with increasing dYDH and formation cubic YDH films. The PDA films band gaps were found to be between 5.31 and 5.72 eV, all of which exhibit secondary gaps. A correlation between growth conditions, annealing, phase evolution, and optical properties of the YDH nanocrystalline thin films is established.