Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physics

Density Functional Calculations On Single Molecular (1d) And Van Der Waals Bi -Layered (2d) Magnets., Md Shamsul Alam Jan 2020

Density Functional Calculations On Single Molecular (1d) And Van Der Waals Bi -Layered (2d) Magnets., Md Shamsul Alam

Open Access Theses & Dissertations

Low-dimensional magnetic materials show novel properties that is not seen in bulk magnets. The weak interactions such as spin-orbit interactions, electron correlation, van der Waals interaction in case magnetic bi-layers, play an important role in determining the properties of the system. Using density functional theory, we computationally investigated two categories of magnetic material- 1: Single Molecular Magnets (SMM) 2: Van der Waals layered Cr-Halide magnets. We used different classes of density functionals to examine the spin ordering and magnetic anisotropy barriers in several single molecule magnets - Mn12, Co4, Ni4, V15. We find that the magnetic anisotropy barrier significantly depends on ...


Dimensionality Of Magnetism In Trirutile Cota2o6 And Its Derivatives, Raju Baral Jan 2019

Dimensionality Of Magnetism In Trirutile Cota2o6 And Its Derivatives, Raju Baral

Open Access Theses & Dissertations

In this thesis, we addressed the question of low dimensionality of trirutile compound CoTa2O6 and studied how the low dimensionality evolved with doping of Mg on Co-site. In order to study low dimensionality in CoTa2O6 and its derivative compounds Co1-xMgxTa2O6 (x = 0.1, 0.3, 0.5, 0.7, and 1), we used different techniques: X-ray diffraction, magnetic susceptibility, magnetization, specific heat and elastic neutron diffraction. We have addressed the question of low dimensional magnetism of CoTa2O6 by preparing phase-pure samples of the compound. In CoTa2O6 a broad feature is observed in magnetic susceptibility at 10 K and an antiferromagnetic ...


A Study Of Solvent Effects On The Ground And Excited States Of Endohedral Tri-Scandium Nitride C80 Fullerene Coupled With Zinc Phthalocyanine And Metal-Free Phthalocyanine Using Dft-Pcm Method, Timilsina Prasad Timlsina Jan 2019

A Study Of Solvent Effects On The Ground And Excited States Of Endohedral Tri-Scandium Nitride C80 Fullerene Coupled With Zinc Phthalocyanine And Metal-Free Phthalocyanine Using Dft-Pcm Method, Timilsina Prasad Timlsina

Open Access Theses & Dissertations

The photovoltaic active materials composed of endohedral metafullerene and phthalocyanine derivatives are known as excellent electron donor-acceptor pairs. The tri-metallic nitride endohedral C80 fullerene exhibits high absorption coefficients in the visible region of the spectrum and has similar electron-accepting abilities as that of C60 fullerene, which can allow for higher efficiencies in OPV devices. In this study, we examine the effect of solvent on the charge transfer excitation energies of Sc3N@C80-ZnPc and Sc3N@C80-H2Pc donor-acceptor molecular complexes. Three different solvents with different polarity - water, toluene, and acetone are used. The solvent is modeled as a polarizable continuum as implemented ...


Innovations In Thermoelectric Materials Research: Compound Agglomeration, Testing And Preselection, Hugo Lopez Jan 2016

Innovations In Thermoelectric Materials Research: Compound Agglomeration, Testing And Preselection, Hugo Lopez

Open Access Theses & Dissertations

Thermoelectric materials have the capacity to convert a temperature differential into electrical power and vice versa. They will represent the next revolution in alternative energies once their efficiencies are enhanced so they can complement other forms of green energies that depend on sources other than a temperature differential.

Progress in materials science depends on the ability to discover new materials to eventually understand them and to finally improve their properties. The work presented here is aimed at dynamizing the screening of materials of thermoelectric interest. The results of this project will enable: theoretical preselection of thermoelectric compounds based on their ...


Electronic Structure And Charge Transfer Excited States Of Endohedral Fullerene Containing Electron Donor-Acceptor Complexes Utilized In Organic Photovoltaics, Fatemeh Amerikheirabadi Jan 2014

Electronic Structure And Charge Transfer Excited States Of Endohedral Fullerene Containing Electron Donor-Acceptor Complexes Utilized In Organic Photovoltaics, Fatemeh Amerikheirabadi

Open Access Theses & Dissertations

Organic Donor &ndash Acceptor complexes form the main component of the organic photovoltaic devices (OPVs). The open circuit voltage of OPVs is directly related to the charge transfer excited state energies of these complexes. Currently a large number of different molecular complexes are being tested for their efficiency in photovoltaic devices. In this work, density functional theory as implemented in the NRLMOL code is used to investigate the electronic structure and related properties of these donor &ndash acceptor complexes. The charge transfer excitation energies are calculated using the perturbative delta self &ndash consistent field method recently developed in our group ...


Spectroscopic Analysis Of Tungsten Oxide Thin Films For Sensor Applications, Jose Luis Enriquez Carrejo Jan 2010

Spectroscopic Analysis Of Tungsten Oxide Thin Films For Sensor Applications, Jose Luis Enriquez Carrejo

Open Access Theses & Dissertations

The objective of this study is targeted toward improving the quality of pure tungsten oxide (WO3) for application to the detection of poisoning gases, especially of H2S. While pure WO3 is a recognized candidate for gas sensing, its characteristics are strongly dependent on the conditions and methods used in its deposition.

Samples of WO3 thin films analyzed in this work were grown on silicon and sapphire substrates using RF magnetron sputtering at a number of different substrate temperatures and Ar:O2 pressure ratios. The properties of the samples were investigated spectroscopically with the goal of determining how variations in the ...


Pressure Induced Dynamical Instabilities In Body Center Cubic Crystals, Oscar Guerrero Jan 2010

Pressure Induced Dynamical Instabilities In Body Center Cubic Crystals, Oscar Guerrero

Open Access Theses & Dissertations

Large-scale atomistic simulations of shock-wave propagation in single crystals exhibit large anisotropies in the elastic-plastic and solid-liquid transitions. Characteristic of this type of simulations are the large strains at which the crystal yields plastically, regardless of crystal orientation. At these large strains, uniaxial deformations, such as those produced in planar shock loading generate dynamical instabilities. We have investigated the directional anisotropy of the elastic limit in bcc crystals, in particular Tantalum (Ta), employing molecular dynamics (MD) simulations. We show that the elastic - plastic transition in BCC defect-free crystals is caused by the appearance of soft-phonon modes and not via homogenous ...


High-Temperature Phase Transitions In Rbh2po4, Heber Jair Martinez Jan 2009

High-Temperature Phase Transitions In Rbh2po4, Heber Jair Martinez

Open Access Theses & Dissertations

Recent studies have shown that the proton conductivity of MH2PO4 (M=Cs, Rb) solid-acids exhibits a sharp, several-order-of-magnitude increase upon heating above a certain temperature threshold [Boysen et al., Chem. Mater. 15, 727(2003), Boysen et al., Chem. Mater. 16, 693(2004)]. This so-called superprotonic behavior allows the above-mentioned compounds to function as fuel-cell electrolytes at intermediate temperatures [Boysen et al., Science 303, 68(2004)], a remarkable application that has attracted much interest. Yet, the crystal structures and microscopic mechanisms responsible for this heating-induced proton conductivity enhancement are not fully understood.

Our group has previously demonstrated [Botez et al., J ...


Pressure Induced Phase Transformation Of Sno2: An Ab Initio Constant Pressure Study, Daniel Tesfai Yehdego Jan 2009

Pressure Induced Phase Transformation Of Sno2: An Ab Initio Constant Pressure Study, Daniel Tesfai Yehdego

Open Access Theses & Dissertations

The behavior of SnO2 under rapid hydrostatic pressures is studied using constant-pressure ab initio simulations. The rutile-type SnO2 gradually transforms into the CaCl2-type structure at 15 GPa. At a pressure of about 20 GPa, a phase transformation into a cubic fluorite-type structure is observed. The orthorhombic Pnma cotunnite-structured phase is observed above 150 GPa. The mechanisms of these phase transformations at the atomistic level are discussed.


Observed Superspin-Glass Behavior In Ni0.5zn0.5fe2o4 Nanoparticles, Antony Adair Jan 2009

Observed Superspin-Glass Behavior In Ni0.5zn0.5fe2o4 Nanoparticles, Antony Adair

Open Access Theses & Dissertations

In this investigation we seek to identify the magnetic behavior of Ni0.5Zn0.5Fe2O4 nanoparticles though AC-susceptibility and DC-magnetization measurements. Powder x-ray diffraction was performed to determine the purity and average diameter ( ~ 9nm) of the particles. Aditionally, structure was confirmed by comparison through the International Centre for Diffraction Data's Powder Diffraction File [52] (PDF # 08-0234).

Zero-field cooled and field cooled DC magnetization measurements (bifurcation and blocking temperature), as well as M(H) hysteresis (below and above the blocking temperature) lead us to initially suggest that the material may in fact be superparamagnetic. However, further investigation of the real AC ...


Study Of Structural And Spectroscopic Properties Of Small Zns Clusters By Dft, Venkata Ramana Chaganti Jan 2008

Study Of Structural And Spectroscopic Properties Of Small Zns Clusters By Dft, Venkata Ramana Chaganti

Open Access Theses & Dissertations

ABSTRACT

The small clusters (aggregates of atoms containing a few tens of atoms) of semiconductors and metals often adopt very different shapes than the fragments of these materials in the bulk phase. Due to their large surface to volume ratio and unsaturated bonds, the small clusters often have properties that are very different from their bulk. Semiconductor clusters are extensively studied for their potential applications in a wide variety of systems from opto-electronic devices to spintronics. The present work is devoted to understanding the structural and electronic properties of small clusters of the zinc sulfide ZnnSn where n = 1 - 6 ...