Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Open Access Theses & Dissertations

Discipline
Keyword
Publication Year

Articles 1 - 30 of 113

Full-Text Articles in Physics

Comparative Experimental And Theoretical Study Of Dopamine And Serotonin Interaction, Jose A. Guerrero Jan 2020

Comparative Experimental And Theoretical Study Of Dopamine And Serotonin Interaction, Jose A. Guerrero

Open Access Theses & Dissertations

To accurately identify and measure the concentrations of dopamine (DA) and serotonin (5-HT) in mixtures of these neurotransmitters without labeling, a comprehensive, comparative computational and Raman experimental analysis is provided. While the distinction between these two analytes may be accomplished for concentrations in the millimolar range of these mixtures, their accurate quantification remains unattainable. As shown for the first time in this study, potential creation of a new composite resulting from their interactions with each other could be a reason for this lack of quantification.

Although this new hydrogen-bonded complex greatly complicates future analyte differentiation and quantification at concentrations typical ...


Independent And Simultaneous Control Of Electromagnetic Wave Properties In Self-Collimating Photonic Crystals Using Spatial Variance, Jesus Javier Gutierrez Jan 2020

Independent And Simultaneous Control Of Electromagnetic Wave Properties In Self-Collimating Photonic Crystals Using Spatial Variance, Jesus Javier Gutierrez

Open Access Theses & Dissertations

Photonic crystals are engineered periodic structures that provide great control over electromagnetic waves. One of these mechanisms is self-collimation, in which the electromagnetic wave travels through the photonic crystal along an axis of the lattice without diffracting or spreading. This mechanism of self-collimation is a dispersion phenomenon, which is dependent on the unit cell's physical and geometrical characteristics. An algorithm for generating spatially variant lattices (SVL) was developed that can change geometrical properties in photonic crystals as a function of position, like unit cell orientation, fill fraction, symmetry, and others in a manner that is smooth, continuous, and virtually ...


Density Functional Calculations On Single Molecular (1d) And Van Der Waals Bi -Layered (2d) Magnets., Md Shamsul Alam Jan 2020

Density Functional Calculations On Single Molecular (1d) And Van Der Waals Bi -Layered (2d) Magnets., Md Shamsul Alam

Open Access Theses & Dissertations

Low-dimensional magnetic materials show novel properties that is not seen in bulk magnets. The weak interactions such as spin-orbit interactions, electron correlation, van der Waals interaction in case magnetic bi-layers, play an important role in determining the properties of the system. Using density functional theory, we computationally investigated two categories of magnetic material- 1: Single Molecular Magnets (SMM) 2: Van der Waals layered Cr-Halide magnets. We used different classes of density functionals to examine the spin ordering and magnetic anisotropy barriers in several single molecule magnets - Mn12, Co4, Ni4, V15. We find that the magnetic anisotropy barrier significantly depends on ...


Some Fermi-Lowdin Orbital Self-Interaction Correction Studies On Atomic Systems, Christopher Alexis Ibarra Jan 2020

Some Fermi-Lowdin Orbital Self-Interaction Correction Studies On Atomic Systems, Christopher Alexis Ibarra

Open Access Theses & Dissertations

Density Function Theory (DFT) is a popular quantum chemistry calculation method with many appeals but also deficiencies. Many modification and additions to the method have been made over the years, such as self-interaction corrections and new density functional approximations. We review here the theoretical background needed for a basic understanding of quantum chemistry calculations. In addition, we present the quantum chemistry calculation method used in this paper called Fermi-Lowdin Self-Interaction Correction (FLOSIC), including the base code it was implemented on, the Naval Research Laboratory Molecular Orbital Library (NRLMOL) Code, and the resulting modified code simply called FLOSIC. Furthermore, we explore ...


Mathematical Modeling Of Microemulsification Processes, Numerical Simulations And Applications To Drug Delivery, Ogochukwu Nneka Ifeacho Jan 2020

Mathematical Modeling Of Microemulsification Processes, Numerical Simulations And Applications To Drug Delivery, Ogochukwu Nneka Ifeacho

Open Access Theses & Dissertations

Microemulsion systems are a great pharmaceutical tool for the delivery of formulations containing multiple hydrophilic and hydrophobic ingredients of varying physicochemical properties. These systems are gaining popularity because of its long shelf life, improved drug solubilisation capacity, easy preparation and improvement of bioavailability. Despite the advantages associated with the use of microemulsion systems in pharmaceutical industries, the major challenge impeding their use has been and continues to be the lack of understanding of these systems.

Microemulsions can be mathematically modeled by an initial boundary value problem involving a sixth order nonlinear time dependent equation. In this Thesis, we present a ...


Development And Assesment Of Local Scaled Self-Interaction Corrected Density Functional Method With Simple Scaling Factor, Selim Romero Jan 2020

Development And Assesment Of Local Scaled Self-Interaction Corrected Density Functional Method With Simple Scaling Factor, Selim Romero

Open Access Theses & Dissertations

The Hohenberg-Kohn-Sham (HKS) density functional theory (DFT) is widely used to compute electronic structures of atoms, molecules, and solids. It is an exact theory in which ground state electron density plays the role of basic variable, same as the wavefunction does in quantum mechanics. The total ground state energy is a functional of electron density. The practical application of HKS DFT require approximation to the exchange-correlation energy functional. Many density functional approximations (DFAs) with various degree of sophistication and complexities have been developed. Depending on the complexity, these functionals include electron density, density gradients, density Laplacian, kinetic energy densities, Hartree-Fock ...


Dimensionality Of Magnetism In Trirutile Cota2o6 And Its Derivatives, Raju Baral Jan 2019

Dimensionality Of Magnetism In Trirutile Cota2o6 And Its Derivatives, Raju Baral

Open Access Theses & Dissertations

In this thesis, we addressed the question of low dimensionality of trirutile compound CoTa2O6 and studied how the low dimensionality evolved with doping of Mg on Co-site. In order to study low dimensionality in CoTa2O6 and its derivative compounds Co1-xMgxTa2O6 (x = 0.1, 0.3, 0.5, 0.7, and 1), we used different techniques: X-ray diffraction, magnetic susceptibility, magnetization, specific heat and elastic neutron diffraction. We have addressed the question of low dimensional magnetism of CoTa2O6 by preparing phase-pure samples of the compound. In CoTa2O6 a broad feature is observed in magnetic susceptibility at 10 K and an antiferromagnetic ...


Study Of Blinking Statistics In Silver Coated Cobalt Ferrite Single Nanoprticle Using Two-Photon Fluorescence Microscopy, Rajen Kumar Goutam Jan 2019

Study Of Blinking Statistics In Silver Coated Cobalt Ferrite Single Nanoprticle Using Two-Photon Fluorescence Microscopy, Rajen Kumar Goutam

Open Access Theses & Dissertations

Two-photon fluorescence microscopy is a powerful tool to study the molecular and cellular interactions. This technology is a non-invasive approach with the advantage of three-dimensional imaging up to submicron resolution. Two-photon excitation process is the result of simultaneous absorption of two photons that has special features of reduced photodamaged and elongated penetration depth on samples. In this work, blinking statistics of silver-coated Cobalt ferrite (CoFe2O4) single nanocrystal is studied using two-photon fluorescence microscopy. By defining the intensity threshold, the observed fluorescence is divided into two distinct stages: OFF and ON states. Both of these states followed the inverse power law ...


Novel Maximum Entrophy Method For The Average Survival Time Differences Between Two Groups, Joscelyne Guzman - Gonzalez Jan 2019

Novel Maximum Entrophy Method For The Average Survival Time Differences Between Two Groups, Joscelyne Guzman - Gonzalez

Open Access Theses & Dissertations

We suggest a Maximum Likelihood estimator for the Average Survival Time Difference between two groups, based on the extra time in which should be added to one group to produce the maximum entropy of the result. The estimator is calculated only from time to event data, does not assume hazard proportionality and provides directly the magnitude of the clinical differences between the groups. Our Monte Carlo simulations show that, even at low sample numbers the estimator is a reliable predictor for the clinical differences between the groups, and therefore can be used to estimate from preliminary data whether or not ...


Using Two-Photon Microscopy To Analyze Arabidopsis Thaliana Leaves Under Autophagy Conditions And Second Harmonic Generation In Collagen, Andres Martin Reyes Jan 2019

Using Two-Photon Microscopy To Analyze Arabidopsis Thaliana Leaves Under Autophagy Conditions And Second Harmonic Generation In Collagen, Andres Martin Reyes

Open Access Theses & Dissertations

Two-photon microscopy has emerged as a highly efficient and effective imaging tool for biological samples. This can be utilized in studying recently emerging technologies and conditions such as the autophagy process in arabidopsis thaliana leaves and second harmonic generation in collagen. Both of these areas of study utilize the two-photon microscopy practice effectively in uncovering more information of the biological nature of examined samples.


Quasi-Harmonic And Anharmonic Entropies In Transition Metals, Bimal K C Jan 2019

Quasi-Harmonic And Anharmonic Entropies In Transition Metals, Bimal K C

Open Access Theses & Dissertations

Density functional theory (DFT) employing the quasi-harmonic approximation (QHA) is a robust method for evaluating thermal properties of solids. In the case of transition metals however, the method yields high values of the thermal pressure when compared to experimental data or with more direct methods like quantum-molecular dynamics (QMD) simulations. Surprisingly, there has not been to date, a systematic study aimed at understanding the reasons for these large discrepancies, particularly at low temperature, i.e. below the Debye temperature of the solid. Using Tantalum as a test model for which a lot of experimental data exist, thermal properties were evaluated ...


Magnetic Nanoparticles For Hyperthermia For Cancer Treatment, Bianca Paola Meneses Brassea Jan 2019

Magnetic Nanoparticles For Hyperthermia For Cancer Treatment, Bianca Paola Meneses Brassea

Open Access Theses & Dissertations

Fe3O4 and NixCu4-x magnetic nanoparticles were synthesized using supercritical conditions of liquids and wet chemistry, respectively. Characterization methods (VSM, SEM, TEM, and magnetic hyperthermia) yielded results that prove feasibility for magnetic hyperthermia for cancer treatment.


Spectroscopic Analysis Of Calcium Oxalate Kidney Stone Inhibition By Nordihydroguaiaretic Acid (Ndga), Mahendra Subedi Jan 2019

Spectroscopic Analysis Of Calcium Oxalate Kidney Stone Inhibition By Nordihydroguaiaretic Acid (Ndga), Mahendra Subedi

Open Access Theses & Dissertations

This current study provides information regarding the inhibition of calcium oxalate type of kidney stones by the use of nordihydroguaiaretic acid (NDGA). Around 80% of kidney stones found in patients are principally made of calcium oxalate and calcium phosphate. NDGA is an antioxidant compound that is chemically extracted from the desert bush Larrea tridentata. This work is a logical continuation of a previous research, where different concentrations of Larrea tridentata extract were used for such inhibition. Size and morphological changes from a calcium oxalate monohydrate (COM) structure to a calcium oxalate dihydrate (COD) structure were previously reported.

In the current ...


A Study Of Solvent Effects On The Ground And Excited States Of Endohedral Tri-Scandium Nitride C80 Fullerene Coupled With Zinc Phthalocyanine And Metal-Free Phthalocyanine Using Dft-Pcm Method, Timilsina Prasad Timlsina Jan 2019

A Study Of Solvent Effects On The Ground And Excited States Of Endohedral Tri-Scandium Nitride C80 Fullerene Coupled With Zinc Phthalocyanine And Metal-Free Phthalocyanine Using Dft-Pcm Method, Timilsina Prasad Timlsina

Open Access Theses & Dissertations

The photovoltaic active materials composed of endohedral metafullerene and phthalocyanine derivatives are known as excellent electron donor-acceptor pairs. The tri-metallic nitride endohedral C80 fullerene exhibits high absorption coefficients in the visible region of the spectrum and has similar electron-accepting abilities as that of C60 fullerene, which can allow for higher efficiencies in OPV devices. In this study, we examine the effect of solvent on the charge transfer excitation energies of Sc3N@C80-ZnPc and Sc3N@C80-H2Pc donor-acceptor molecular complexes. Three different solvents with different polarity - water, toluene, and acetone are used. The solvent is modeled as a polarizable continuum as implemented ...


Computational Studies On Perovskite-Metallofullerene Interface And Magnetic Properties Of Mn-Based Mixed Olivines, Bethuel Omutiti Khamala Jan 2019

Computational Studies On Perovskite-Metallofullerene Interface And Magnetic Properties Of Mn-Based Mixed Olivines, Bethuel Omutiti Khamala

Open Access Theses & Dissertations

Methyl ammonium lead halide (MAPbX3) perovskite based solar cells have recently emerged as promising class of materials for photovoltaic applications with efficiencies reaching over 22%. Designing interfaces with strong binding is vital to developing efficient, high-performing solar cells. Fullerene-based materials are widely employed as efficient electron acceptors and can serve as electron transporting layer in perovskite based solar cells. We have studied interfaces of methyl ammonium lead iodide MAPbI3 with Sc3N@C80 fullerene and Sc3N@C80PCBM fullerene derivate within the density functional formalism. Different surface terminations and orientations of the methyl ammonium are examined for binding of the fullerene layer ...


Non Linear Optics For Materials Fabrication And Medical Instrumentation, Aurelio Paez Jan 2019

Non Linear Optics For Materials Fabrication And Medical Instrumentation, Aurelio Paez

Open Access Theses & Dissertations

Two-photon absorption is a nonlinear optical process where two photons are absorbed by a molecule simultaneously. The probability of this quantum phenomenon is proportional to the quadratic excitation of light intensity. It has many applications in biomedical and materials research, such as two-photon fluorescence microcopy. The first project is to apply two-photon absorption induced bond cleavage in photoreactive materials for engineering 3D tissue scaffolds. The major challenge for growing thick 3D tissues is the lack of vasculature, where nutrients and oxygen can be delivered to the growing cells. Our collaborators have synthesized a novel polypeptide that is composed of 34-mer ...


Electron Binding Energy Of Polar Molecules Using Fermi Löwdin Orbital Self Interaction Corrected Density Functional Scheme, Peter Obinna Ufondu Jan 2019

Electron Binding Energy Of Polar Molecules Using Fermi Löwdin Orbital Self Interaction Corrected Density Functional Scheme, Peter Obinna Ufondu

Open Access Theses & Dissertations

Density functional theory (DFT) has become a standard method for electronic structure calculations in physics. The standard approximate density functional usually do not bind this class of anions, due to self-interaction error (SIE). We apply the recently developed Fermi Löwdin orbitals based self-interaction correction method (FLOSIC) with long-range diffuse Gaussian functions to study dipole bound anions and negatively charged water clusters. These calculations are carried out using Perdew-Wang (1992) local spin density PW91-LDA, Perdew-Burke-Ernzerhof PBE-GGA, and the recently developed Strongly Constrained and Appropriately Normed SCAN-meta-GGA functional which satisfies all the known constraints for exchange-correlation functional. Plot from FLOSIC density difference ...


Nonlinear Optics For Nanoparticle Tracking And Materials Characterization, Angela Christina Aguilar Jan 2019

Nonlinear Optics For Nanoparticle Tracking And Materials Characterization, Angela Christina Aguilar

Open Access Theses & Dissertations

A high-speed 3D imaging method is developed by integrating ultrafast laser pulse shaping, temporal focusing microscopy and defocused imaging. This system does not require mechanical movement of either the stage or laser beam. Axial scanning is achieved by manipulation of group velocity dispersions on the femtosecond laser spectrum via pulse shaping method by applying modulation functions on an acoustic optical modulator which diffracts the laser spectrum. The scanning depth becomes only dependent on electronic signals which can be tuned to kHz speeds. The volumetric high-speed scanning capability was demonstrated on fluorescent microspheres suspended in a volume of 100 x100 x ...


Study Of D-Electron Systems With Fermi-Lowdin Orbital Self-Interaction Correction, Prakash Mishra Jan 2019

Study Of D-Electron Systems With Fermi-Lowdin Orbital Self-Interaction Correction, Prakash Mishra

Open Access Theses & Dissertations

Density Functional Theory (DFT) is one of the very popular and versatile methods for calculations to study electronic structure, and the accuracy of DFT depends on the approximation used in the exchange-correlation functional. One of the known problems with the approximation is that the widely used density functional approximations (DFA) suffer self-interaction errors. Systems with d-electrons such as transition metal oxides often show deviation of DFT predicted behavior from experimental result. SIE tends to unphysically lower the energies of fractionally occupied state which leads to deviation from piece-wise linear behavior of total energy between two integer occupations. This leads to ...


Near Room Temperature Magnetocaloric Materials For Magnetic Refrigeration, Eduardo Martinez Teran Jan 2019

Near Room Temperature Magnetocaloric Materials For Magnetic Refrigeration, Eduardo Martinez Teran

Open Access Theses & Dissertations

Magnetic refrigeration (MR) is a cooling process based on the magnetocaloric effect (MCE) that is present to some extent in all magnetic materials, and the ones in which this effect is more appreciable are called magnetocaloric materials (MCM). The implementation of new designs and materials for the construction of cooling systems is a must do, being essential that these improved designs will reduce the environmental impact and increase the efficiency of their predecessors. In this thesis, the magnetocaloric effect theory is presented from a thermodynamic point of view and also the synthesis and study to a new Heusler alloy (MnFe2Ga ...


Phase Diagram Of Nuclear Matter, Adrian Gaytan Terrazas Jan 2019

Phase Diagram Of Nuclear Matter, Adrian Gaytan Terrazas

Open Access Theses & Dissertations

Nowadays it is well known that nuclear matter has a liquid and a gas phase, as well as a coexistence of phases region. Symmetric nuclear matter (same number of protons and neutrons) exhibit phase transitions from the gas phase to a liquid-gas mixture. A useful tool to represent such phases and transitions is through diagrams that show the necessary conditions of density and temperature to be in either of the phases.

Now the question is, what if we extend the traditional phase diagram for symmetric matter to the asymmetric

cases (different number of protons and neutrons)?

This study uses classical ...


Geant4 Study Of Protons - Body Interactions, Omar Hernandez Rodriguez Jan 2018

Geant4 Study Of Protons - Body Interactions, Omar Hernandez Rodriguez

Open Access Theses & Dissertations

Proton beam therapy for cancer treatment uses high-energy protons to destroy cancer cells, a problem that needs immediate attention is the determination of where in the body the protons are hitting, in real time, i.e. during the irradiation. One possibility is to pay attention to the gamma rays produced during the irradiation, and use the information they carry to infer the body part that produced the gamma ray.

This Thesis presents the results of an investigation of the interaction of protons with different body parts. Focusing on gamma ray-producing interactions, the goal is to determine the type of interaction ...


Tunable Surface Interactions In Adsorbing Polymer Solutions, Sorour Hosseini Jan 2018

Tunable Surface Interactions In Adsorbing Polymer Solutions, Sorour Hosseini

Open Access Theses & Dissertations

A simple formalism is suggested, to calculate the most likely configuration of a finite polymer, between two surfaces on which the monomers can adsorb. Grafted polymers typically enhance the stability of colloidal dispersions, via the long ranged steric repulsion due to the overlap of their polymer brushes, which can be thicker that the typical range of the DLVO interactions. However, if the polymers are adsorbing on the colloidal surfaces, there is the possibility of bridge formation between particles and therefore long-range attractions are induced (a procedure commonly used for the flocculation of colloidal suspensions). The two effects are competing and ...


The Inverse And Direct Hofmeister Series Of Hen Egg White Lysozyme At Ph Below The Isoelectric Point (Pi) As Seen By Small Angle X-Ray Scattering(Saxs), Pawan Koirala Jan 2018

The Inverse And Direct Hofmeister Series Of Hen Egg White Lysozyme At Ph Below The Isoelectric Point (Pi) As Seen By Small Angle X-Ray Scattering(Saxs), Pawan Koirala

Open Access Theses & Dissertations

The structural changes of Hen Egg White Lysozyme (HEWL) in the intermediate stages leading up to Hofmeister anion-induced aggregation were measured using small-angle x-ray Scattering (SAXS). We used three concentrations of HEWL: 10mg/ml, 60mg/ml and 200mg/ml and two concentrations of salts: 0.1M and 1.0M, mostly in a Tris-buffer solution with a pH of 9.0. For 200mg/ml in Di-water solution, the scattering signal was best fit using an ellipsoidal form factor with equatorial radius of 28.4±0.1 Å and polar radius of 11.3±0.1 Å, and a screened Coulomb repulsive ...


Geant4 Study Of A Gamma Ray Collimator For Proton Therapy, Selim Romero Jan 2018

Geant4 Study Of A Gamma Ray Collimator For Proton Therapy, Selim Romero

Open Access Theses & Dissertations

This Thesis presents the results of an investigation of the use of collimators in proton therapy. The problem to solve is that in the proton therapy, we do not have the certainty if the target-tumor is receiving all the energy to destroy it or if we are really shooting at this one, so the remaining question is: where the beam is hitting? How to know it? to answer those questions our work has the propose of study proton therapy to determine where the proton interactions occur, these kinds of interactions usually produce gamma rays, and we simulated in GEANT4 the ...


The Hierarchical Structure Of Nanoporous Carbon Electrode Materials Elucidated By Water Sorption: A Comparison Of Multiple Structural Models, Jose Ali Espitia Jan 2018

The Hierarchical Structure Of Nanoporous Carbon Electrode Materials Elucidated By Water Sorption: A Comparison Of Multiple Structural Models, Jose Ali Espitia

Open Access Theses & Dissertations

The total amount of energy that an electrical double layer capacitor (EDLC) can store depends on the voltage and the accessible surface area for ion electrosorption. Nanoporous carbon materials with a high specific surface area, such as carbide derived carbon (CDC), make ideal electrodes for EDLC devices. CDC materials have fine-tuned pore sizes in the subnanometer range which are controlled by the initial carbide (TiC) and annealing conditions. Water can enter TiC-CDC pores and give filling fractions in excess of 0.6 g/g (H2O/C). Recent reports of water's diffusional dynamics dependence on CDC pore size indicate confinement ...


Experimental Laser Powder Bed Fusion System For Difficult To Process Metallic Materials, Syed Zia Uddin Jan 2018

Experimental Laser Powder Bed Fusion System For Difficult To Process Metallic Materials, Syed Zia Uddin

Open Access Theses & Dissertations

The focus of this research was twofold, such as development of defect free fabrication parameters for laser powder bed fusion (LPBF) processing of crack prone or difficult to process metallic materials, and study of the temperature dependence of emissivity for some commonly used metal alloy powders in LPBF process. The later objective extends to the implementation of multiwavelength (MW) pyrometer technology for in situ true surface temperature measurement in LPBF process. LPBF is an additive manufacturing (AM) process capable of layer-by-layer manufacturing by successive laser melting of each layer according to CAD data. AM manufacturing has the inherent advantages of ...


Gravitational Waves Research At Toros Utrgv, Pamela Ivonne Lara Jan 2018

Gravitational Waves Research At Toros Utrgv, Pamela Ivonne Lara

Open Access Theses & Dissertations

The detection of gravitational waves (GW) has directly opened a new era in the observation of cosmic events. One hundred years after its theoretical prediction we find ourselves immerged in the multi-messenger study of the signals at the root of gravitational wave detection. The electromagnetic (EM) counterpart to GW is the optical portion of that signal and the main objective in the organization of TOROS Collaboration: finding and studying kilonovas, the name given by Metzger (Metzger et al, 2010), to the EM counterpart to gravitational waves.

In order for TOROS to find kilonovas, it needed to create a python language ...


Magnetic And Catalytic Properties Of Transition Metal Doped Mos2 Nanocrystals, Luis Martinez Jan 2018

Magnetic And Catalytic Properties Of Transition Metal Doped Mos2 Nanocrystals, Luis Martinez

Open Access Theses & Dissertations

Magnetism and catalytic activity of nanoscale layered two-dimensional (2D) transition metal dichalcogenides (TMDs) have gained an increasing research interest in the recent past. To broaden the current knowledge and understanding on this subject, in this work, together with my collaborators, I study the magnetic and electrocatalytic properties of hydrothermally grown pristine and transition metal doped (10% of Co, Ni, Fe and Mn) 2H-MoS2 nanosheets/nanocrystals (NCs), with the particle size of 25-30 nm. A broad range of experimental measurements such as x-ray diffraction, transmission electron microscopy, x-ray photo absorption spectroscopy, Raman spectroscopy, magnetic, catalytic and electron spin resonance have been ...


Imaging Live Drosophila Brain With Two-Photon Fluorescence Microscopy, Syeed Ehsan Ahmed Jan 2017

Imaging Live Drosophila Brain With Two-Photon Fluorescence Microscopy, Syeed Ehsan Ahmed

Open Access Theses & Dissertations

Two-photon fluorescence microscopy is an imaging technique which delivers distinct benefits for in vivo cellular and molecular imaging. Cyclic adenosine monophosphate (cAMP), a second messenger molecule, is responsible for triggering many physiological changes in neural system. However, the mechanism by which this molecule regulates responses in neuron cells is not yet clearly understood. When cAMP binds to a target protein, it changes the structure of that protein. Therefore, studying this molecular structure change with fluorescence resonance energy transfer (FRET) imaging can shed light on the cAMP functioning mechanism. FRET is a non-radiative dipole-dipole coupling which is sensitive to small distance ...