Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Mathematics & Statistics Faculty Publications

Discipline
Keyword
Publication Year

Articles 1 - 30 of 46

Full-Text Articles in Physics

Oscillating Icebergs, John Adam Jan 2023

Oscillating Icebergs, John Adam

Mathematics & Statistics Faculty Publications

No abstract provided.


A Super Fast Algorithm For Estimating Sample Entropy, Weifeng Liu, Ying Jiang, Yuesheng Xu Apr 2022

A Super Fast Algorithm For Estimating Sample Entropy, Weifeng Liu, Ying Jiang, Yuesheng Xu

Mathematics & Statistics Faculty Publications

: Sample entropy, an approximation of the Kolmogorov entropy, was proposed to characterize complexity of a time series, which is essentially defined as − log(B/A), where B denotes the number of matched template pairs with length m and A denotes the number of matched template pairs with m + 1, for a predetermined positive integer m. It has been widely used to analyze physiological signals. As computing sample entropy is time consuming, the box-assisted, bucket-assisted, x-sort, assisted sliding box, and kd-tree-based algorithms were proposed to accelerate its computation. These algorithms require O(N2) or …


Rock Paintings: Solutions For Fermi Questions, September 2022, John Adam Jan 2022

Rock Paintings: Solutions For Fermi Questions, September 2022, John Adam

Mathematics & Statistics Faculty Publications

No abstract provided.


Recent Analytic Development Of The Dynamic Q-Tensor Theory For Nematic Liquid Crystals, Xiang Xu Jan 2022

Recent Analytic Development Of The Dynamic Q-Tensor Theory For Nematic Liquid Crystals, Xiang Xu

Mathematics & Statistics Faculty Publications

Liquid crystals are a typical type of soft matter that are intermediate between conventional crystalline solids and isotropic fluids. The nematic phase is the simplest liquid crystal phase, and has been studied the most in the mathematical community. There are various continuum models to describe liquid crystals of nematic type, and Q-tensor theory is one among them. The aim of this paper is to give a brief review of recent PDE results regarding the Q-tensor theory in dynamic configurations.


On The Implementation And Further Validation Of A Time Domain Boundary Element Method Broadband Impedance Boundary Condition, Fang Q. Hu, Douglas M. Nark Jan 2022

On The Implementation And Further Validation Of A Time Domain Boundary Element Method Broadband Impedance Boundary Condition, Fang Q. Hu, Douglas M. Nark

Mathematics & Statistics Faculty Publications

A time domain boundary integral equation with Burton-Miller reformulation is presented for acoustic scattering by surfaces with liners in a uniform mean flow. The Ingard-Myers impedance boundary condition is implemented using a broadband multipole impedance model and converted into time domain differential equations to augment the boundary integral equation. The coupled integral-differential equations are solved numerically by a March-On-in-Time (MOT) scheme. While the Ingard-Myers condition is known to support Kelvin-Helmholtz instability due to its use of a vortex sheet interface between the flow and the liner surface, it is found that by neglecting a second derivative term in the current …


Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu Jan 2022

Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu

Mathematics & Statistics Faculty Publications

We study the use of deep learning techniques to reconstruct the kinematics of the neutral current deep inelastic scattering (DIS) process in electron–proton collisions. In particular, we use simulated data from the ZEUS experiment at the HERA accelerator facility, and train deep neural networks to reconstruct the kinematic variables Q2 and x. Our approach is based on the information used in the classical construction methods, the measurements of the scattered lepton, and the hadronic final state in the detector, but is enhanced through correlations and patterns revealed with the simulated data sets. We show that, with the appropriate selection …


Numerical Simulations Of Capsule Deformation Using A Dual Time-Stepping Lattice Boltzmann Method, Charles Armstrong, Yan Peng Jan 2021

Numerical Simulations Of Capsule Deformation Using A Dual Time-Stepping Lattice Boltzmann Method, Charles Armstrong, Yan Peng

Mathematics & Statistics Faculty Publications

In this work a quasisteady, dual time-stepping lattice Boltzmann method is proposed for simulation of capsule deformation. At each time step the steady-state lattice Boltzmann equation is solved using the full approximation storage multigrid scheme for nonlinear equations. The capsule membrane is modeled as an infinitely thin shell suspended in an ambient fluid domain with the fluid structure interaction computed using the immersed boundary method. A finite element method is used to compute the elastic forces exerted by the capsule membrane. Results for a wide range of parameters and initial configurations are presented. The proposed method is found to reduce …


Numerical Simulation For A Rising Bubble Interacting With A Solid Wall: Impact, Bounce, And Thin Film Dynamics, Changjuan Zhang, Jie Li, Li-Shi Luo, Tiezheng Qian Jan 2018

Numerical Simulation For A Rising Bubble Interacting With A Solid Wall: Impact, Bounce, And Thin Film Dynamics, Changjuan Zhang, Jie Li, Li-Shi Luo, Tiezheng Qian

Mathematics & Statistics Faculty Publications

Using an arbitrary Lagrangian-Eulerian method on an adaptive moving unstructured mesh, we carry out numerical simulations for a rising bubble interacting with a solid wall. Driven by the buoyancy force, the axisymmetric bubble rises in a viscous liquid toward a horizontal wall, with impact on and possible bounce from the wall. First, our simulation is quantitatively validated through a detailed comparison between numerical results and experimental data. We then investigate the bubble dynamics which exhibits four different behaviors depending on the competition among the inertial, viscous, gravitational, and capillary forces. A phase diagram for bubble dynamics has been produced using …


Shape Resonances Of The Transverse Magnetic Mode In A Spherically Stratified Medium, Umaporn Nuntaplook, John A. Adam Jan 2018

Shape Resonances Of The Transverse Magnetic Mode In A Spherically Stratified Medium, Umaporn Nuntaplook, John A. Adam

Mathematics & Statistics Faculty Publications

Although morphology-dependent resonances (MDRs) have been studied for decades, it is interesting to note that TM resonances have not been as widely investigated as those of the TE mode. Nevertheless, the formers are also worthy of additional study. Even though the TE and TM mode resonances can be generated using the same technique, their properties (such as the additional sharp peak in the source function at the particle surface) are quite distinct. We present the derivation of the resonance formulations for TM mode for both increasing and decreasing piecewise-constant refractive index profiles in a two-layer model of a sphere embedded …


Multiplicative Noise Removal With A Sparsity-Aware Optimization Model, Jian Lu, Lixin Shen, Chen Xu, Yuesheng Xu Jan 2017

Multiplicative Noise Removal With A Sparsity-Aware Optimization Model, Jian Lu, Lixin Shen, Chen Xu, Yuesheng Xu

Mathematics & Statistics Faculty Publications

Restoration of images contaminated by multiplicative noise (also known as speckle noise) is a key issue in coherent image processing. Notice that images under consideration are often highly compressible in certain suitably chosen transform domains. By exploring this intrinsic feature embedded in images, this paper introduces a variational restoration model for multiplicative noise reduction that consists of a term reflecting the observed image and multiplicative noise, a quadratic term measuring the closeness of the underlying image in a transform domain to a sparse vector, and a sparse regularizer for removing multiplicative noise. Being different from popular existing models which focus …


Fast Multipole Method Using Cartesian Tensor In Beam Dynamic Simulation, He Zhang, He Huang, Rui Li, Jie Chen, Li-Shi Luo Jan 2017

Fast Multipole Method Using Cartesian Tensor In Beam Dynamic Simulation, He Zhang, He Huang, Rui Li, Jie Chen, Li-Shi Luo

Mathematics & Statistics Faculty Publications

The fast multipole method (FMM) using traceless totally symmetric Cartesian tensor to calculate the Coulomb interaction between charged particles will be presented. The Cartesian tensor based FMM can be generalized to treat other non-oscillating interactions with the help of the differential algebra or the truncated power series algebra. Issues on implementation of the FMM in beam dynamic simulations are also discussed. © 2017 Author(s).


Simulation Study On Jleic High Energy Bunched Electron Cooling, H. Zhang, Y. Roblin, Y. Zhang, Ya. Derbenev, S. Benson, R. Li, J. Chen, H. Huang, L. Luo Jan 2017

Simulation Study On Jleic High Energy Bunched Electron Cooling, H. Zhang, Y. Roblin, Y. Zhang, Ya. Derbenev, S. Benson, R. Li, J. Chen, H. Huang, L. Luo

Mathematics & Statistics Faculty Publications

In the JLab Electron Ion Collider (JLEIC) project the traditional electron cooling technique is used to reduce the ion beam emittance at the booster ring, and to compensate the intrabeam scattering effect and maintain the ion beam emittance during the collision at the collider ring. Different with other electron coolers using DC electron beam, the proposed electron cooler at the JLEIC ion collider ring uses high energy bunched electron beam, provided by an ERL. In this paper, we report some recent simulation study on how the electron cooling rate will be affected by the bunched electron beam properties, such as …


Fire, Ice, Water, And Dirt: A Simple Climate Model, John Kroll Jan 2017

Fire, Ice, Water, And Dirt: A Simple Climate Model, John Kroll

Mathematics & Statistics Faculty Publications

A simple paleoclimate model was developed as a modeling exercise. The model is a lumped parameter system consisting of an ocean (water), land (dirt), glacier, and sea ice (ice) and driven by the sun (fire). In comparison with other such models, its uniqueness lies in its relative simplicity yet yielding good results. For nominal values of parameters, the system is very sensitive to small changes in the parameters, yielding equilibrium, steady oscillations, and catastrophes such as freezing or boiling oceans. However, stable solutions can be found, especially naturally oscillating solutions. For nominally realistic conditions, natural periods of order 100kyrs are …


Development Of The Electron Cooling Simulation Program For Jleic, H. Zhang, J. Chen, R. Li, Y. Zhang, H. Huang, L. Luo Jan 2016

Development Of The Electron Cooling Simulation Program For Jleic, H. Zhang, J. Chen, R. Li, Y. Zhang, H. Huang, L. Luo

Mathematics & Statistics Faculty Publications

In the JLab Electron Ion Collider (JLEIC) project the traditional electron cooling technique is used to reduce the ion beam emittance at the booster ring, and to compensate the intrabeam scattering effect and maintain the ion beam emittance during collision at the collider ring. A new electron cooling process simulation program has been developed to fulfill the requirements of the JLEIC electron cooler design. The new program allows the users to calculate the electron cooling rate and simulate the cooling process with either DC or bunched electron beam to cool either coasting or bunched ion beam. It has been benchmarked …


Evaluation Of Ray-Path Integrals In Geometrical Optics, John A. Adam, Michael Pohrivchak Jan 2016

Evaluation Of Ray-Path Integrals In Geometrical Optics, John A. Adam, Michael Pohrivchak

Mathematics & Statistics Faculty Publications

A brief summary of the physical context to this paper is provided, and the deviation angle undergone by an incident ray after k internal reflections inside a transparent unit sphere is formulated. For radially inhomogeneous spheres (in particular) this angle is related to a ray-path integral; an improper integral for which there are relatively few known exact analytical forms, even for simple refractive index profiles n(r). Thus for a linear profile the integral is a combination of incomplete elliptic integrals of the first and third kinds (though not all are as complicated as this). The ray-path integral is evaluated …


Network-Based Assessments Of Percolation-Induced Current Distributions In Sheared Rod Macromolecular Dispersions, Feng Shi, Simi Wang, M. Gregory Forest, Peter J. Mucha, Ruhai Zhou Jan 2014

Network-Based Assessments Of Percolation-Induced Current Distributions In Sheared Rod Macromolecular Dispersions, Feng Shi, Simi Wang, M. Gregory Forest, Peter J. Mucha, Ruhai Zhou

Mathematics & Statistics Faculty Publications

Conducting high-aspect-ratio rods with 1-10 nm-scale diameters dispersed in poorly conducting matrices at extremely low, O(1%), volume fractions induce dramatic gains in bulk conductivity at rod percolation threshold. Experimentally [Nan, Shen, and Ma, Annu. Rev. Mater. Res., 40 (2010), pp. 131-151], bulk conductivity abandons the prepercolation, linear scaling with volume fraction that follows from homogenization theory [Zheng et al., Adv. Funct. Mater., 15 (2005), pp. 627-638], and then postpercolation jumps orders of magnitude to approach that of the pure rod macromolecular phase as predicted by classical percolation theory [Stauffer and Aharony, Introduction to Percolation Theory, CRC …


Scalar Wave Scattering By Two-Layer Radial Inhomogeneities, Umaporn Nuntaplook, John Adam Jan 2014

Scalar Wave Scattering By Two-Layer Radial Inhomogeneities, Umaporn Nuntaplook, John Adam

Mathematics & Statistics Faculty Publications

It is shown that the iteration technique gives a better approximation for the problem with long wavelengths.


Lattice-Boltzmann Simulations Of The Thermally Driven 2d Square Cavity At High Rayleigh Numbers, Dario Contrino, Pierre Lallemand, Pietro Asinari, Li-Shi Luo Jan 2014

Lattice-Boltzmann Simulations Of The Thermally Driven 2d Square Cavity At High Rayleigh Numbers, Dario Contrino, Pierre Lallemand, Pietro Asinari, Li-Shi Luo

Mathematics & Statistics Faculty Publications

The thermal lattice Boltzmann equation (TLBE) with multiple-relaxation-times (MRT) collision model is used to simulate the steady thermal convective flows in the two-dimensional square cavity with differentially heated vertical walls at high Rayleigh numbers. The MRT-TLBE consists of two sets of distribution functions, i.e., a D2Q9 model for the mass-momentum equations and a D2Q5 model for the temperature equation. The dimensionless flow parameters are the following: the Prandtl number Pr = 0.71 and the Rayleigh number Ra = 106, 107, and 108. The D2Q9 + D2Q5 MRT-TLBE is shown to be second-order accurate and …


Rheological Signatures In Limit Cycle Behaviour Of Dilute, Active, Polar Liquid Crystalline Polymers In Steady Shear, M. Gregory Forest, Panon Phuworawong, Qi Wang, Ruhai Zhou Jan 2014

Rheological Signatures In Limit Cycle Behaviour Of Dilute, Active, Polar Liquid Crystalline Polymers In Steady Shear, M. Gregory Forest, Panon Phuworawong, Qi Wang, Ruhai Zhou

Mathematics & Statistics Faculty Publications

We consider the dilute regime of active suspensions of liquid crystalline polymers (LCPs), addressing issues motivated by our kinetic model and simulations in Forest et al. (Forest et al. 2013 Soft Matter 9, 5207-5222 (doi:10.1039/c3sm27736d)). In particular, we report unsteady two-dimensional heterogeneous flow-orientation attractors for pusher nanorod swimmers at dilute concentrations where passive LCP equilibria are isotropic. These numerical limit cycles are analogous to longwave (homogeneous) tumbling and kayaking limit cycles and two-dimensional heterogeneous unsteady attractors of passive LCPs in weak imposed shear, yet these states arise exclusively at semi-dilute concentrations where stable equilibria are nematic. The results in Forest …


Length Effects Of A Built-In Flapping Flat Plate On The Flow Over A Traveling Wavy Foil, Nansheng Liu, Yan Peng, Xiyun Lu Jan 2014

Length Effects Of A Built-In Flapping Flat Plate On The Flow Over A Traveling Wavy Foil, Nansheng Liu, Yan Peng, Xiyun Lu

Mathematics & Statistics Faculty Publications

Flow over the traveling wavy foil with a built-in rigid flapping plate at its trailing edge has been numerically studied using the multi-relaxation-time Lattice Boltzmann method and immersed boundary method. The effect of the plate length on the propulsive performance such as the thrust force, energy consumption, and propeller efficiency has been investigated. Three modes (body force dominated, body and tail force competing and tail force dominated modes) have been identified that are associated with different hydrodynamics and flow structures. It is revealed that there exists a better performance plate length region and, within this region, a high propeller efficiency …


Flow Over A Traveling Wavy Foil With A Passively Flapping Flat Plate, Nansheng Liu, Yan Peng, Youwen Liang, Xiyun Lu Jan 2012

Flow Over A Traveling Wavy Foil With A Passively Flapping Flat Plate, Nansheng Liu, Yan Peng, Youwen Liang, Xiyun Lu

Mathematics & Statistics Faculty Publications

Flow over a traveling wavy foil with a passively flapping flat plate has been investigated using a multiblock lattice Boltzmann equation and the immersed boundary method. The foil undergoes prescribed undulations in the lateral direction and the rigid flat plate has passive motion determined by the fluid structure interaction. This simplified model is used to study the effect of the fish caudal fin and its flexibility on the locomotion of swimming animals. The flexibility of the caudal fin is modeled by a torsion spring acting about the pivot at the conjuncture of the wavy foil and the flat plate. The …


Numerics Of The Lattice Boltzmann Method: Effects Of Collision Models On The Lattice Boltzmann Simulations, Li-Shi Luo, Wei Liao, Xingwang Chen, Yan Peng, Wei Zhang Jan 2011

Numerics Of The Lattice Boltzmann Method: Effects Of Collision Models On The Lattice Boltzmann Simulations, Li-Shi Luo, Wei Liao, Xingwang Chen, Yan Peng, Wei Zhang

Mathematics & Statistics Faculty Publications

We conduct a comparative study to evaluate several lattice Boltzmann (LB) models for solving the near incompressible Navier-Stokes equations, including the lattice Boltzmann equation with the multiple-relaxation-time (MRT), the two-relaxation-time (TRT), the single-relaxation-time (SRT) collision models, and the entropic lattice Boltzmann equation (ELBE). The lid-driven square cavity flow in two dimensions is used as a benchmark test. Our results demonstrate that the ELBE does not improve the numerical stability of the SRT or the lattice Bhatnagar-Gross-Krook (LBGK) model. Our results also show that the MRT and TRT LB models are superior to the ELBE and LBGK models in terms of …


Effects Of Multitemperature Nonequilibrium On Compressible Homogeneous Turbulence, Wei Liao, Yan Peng, Li-Shi Luo Jan 2010

Effects Of Multitemperature Nonequilibrium On Compressible Homogeneous Turbulence, Wei Liao, Yan Peng, Li-Shi Luo

Mathematics & Statistics Faculty Publications

We study the effects of the rotational-translational energy exchange on the compressible decaying homogeneous isotropic turbulence (DHIT) in three dimensions through direct numerical simulations. We use the gas-kinetic scheme coupled with multitemperature nonequilibrium based on the Jeans-Landau-Teller model. We investigate the effects of the relaxation time of rotational temperature, ZR, and the initial ratio of the rotational and translational temperatures, TR0 / TL0, on the dynamics of various turbulence statistics including the kinetic energy K (t), the dissipation rate ε (t), the energy spectrum E (k,t), the root mean square of the velocity divergence θ′ …


Mesoscopic Methods In Engineering And Science, Alfons Hoekstra, Li-Shi Luo, Manfred Krafczyk Jan 2010

Mesoscopic Methods In Engineering And Science, Alfons Hoekstra, Li-Shi Luo, Manfred Krafczyk

Mathematics & Statistics Faculty Publications

(First paragraph) Matter, conceptually classified into fluids and solids, can be completely described by the microscopic physics of its constituent atoms or molecules. However, for most engineering applications a macroscopic or continuum description has usually been sufficient, because of the large disparity between the spatial and temporal scales relevant to these applications and the scales of the underlying molecular dynamics. In this case, the microscopic physics merely determines material properties such as the viscosity of a fluid or the elastic constants of a solid. These material properties cannot be derived within the macroscopic framework, but the qualitative nature of the …


Gas-Kinetic Schemes For Direct Numerical Simulations Of Compressible Homogeneous Turbulence, Wei Liao, Yan Peng, Li-Shi Luo Jan 2009

Gas-Kinetic Schemes For Direct Numerical Simulations Of Compressible Homogeneous Turbulence, Wei Liao, Yan Peng, Li-Shi Luo

Mathematics & Statistics Faculty Publications

We apply the gas-kinetic scheme (GKS) for the direct numerical simulations (DNSs) of compressible decaying homogeneous isotropic turbulence (DHIT). We intend to study the accuracy, stability, and efficiency of the gas-kinetic scheme for DNS of compressible homogeneous turbulence depending on both flow conditions and numerics. In particular, we study the GKS with multidimensional, quasi-one-dimensional, dimensional-splitting, and smooth-flow approximations. We simulate the compressible DHIT with the Taylor microscale Reynolds number Reλ =72.0 and the turbulence Mach number Mat between 0.1 and 0.6. We compute the low-order statistical quantities including the total kinetic energy K (t), the dissipation rate ε (t), …


Dedication To Pierre Lallemand On The Occasion Of His Retirement, Dominque D'Humieres, Manfred Krafczyk, Li-Shi Luo, Robert Rubinstein Jan 2008

Dedication To Pierre Lallemand On The Occasion Of His Retirement, Dominque D'Humieres, Manfred Krafczyk, Li-Shi Luo, Robert Rubinstein

Mathematics & Statistics Faculty Publications

The fourth international conference for mesoscopic methods in engineering and science (http://www.icmmes. org), held in Munich, Germany, 16–20 July 2007, was closed with a celebration honouring Dr Pierre Lallemand on the occasion of his retirement from the Centre National de la Recherche Scientifique (CNRS) after more than 40 years of service.


Microscopic-Macroscopic Simulations Of Rigid-Rod Polymer Hydrodynamics: Heterogeneity And Rheochaos, M. Gregory Forest, Ruhai Zhou, Qi Wang Jan 2007

Microscopic-Macroscopic Simulations Of Rigid-Rod Polymer Hydrodynamics: Heterogeneity And Rheochaos, M. Gregory Forest, Ruhai Zhou, Qi Wang

Mathematics & Statistics Faculty Publications

Rheochaos is a remarkable phenomenon of nematic (rigid-rod) polymers in steady shear, with sustained chaotic fluctuations of the orientational distribution of the rod ensemble. For monodomain dynamics, imposing spatial homogeneity and linear shear, rheochaos is a hallmark prediction of the Doi-Hess theory [M. Doi, J. Polym. Sci. Polym. Phys. Ed., 19 (1981), pp. 229-243; M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, London, New York, 1986; S. Hess, Z. Naturforsch., 31 (1976), pp. 1034-1037. The model behavior is robust, captured by second-moment tensor approximations G. Rienäcker, M. Kröger, and S. Hess, Phys. Rev. …


Monodomain Dynamics For Rigid Rod And Platelet Suspensions In Strongly Coupled Coplanar Linear Flow And Magnetic Fields. Ii. Kinetic Theory, M. Gregory Forest, Sarthok Sircar, Qi Wang, Ruhai Zhou Jan 2006

Monodomain Dynamics For Rigid Rod And Platelet Suspensions In Strongly Coupled Coplanar Linear Flow And Magnetic Fields. Ii. Kinetic Theory, M. Gregory Forest, Sarthok Sircar, Qi Wang, Ruhai Zhou

Mathematics & Statistics Faculty Publications

We establish reciprocity relations of the Doi-Hess kinetic theory for rigid rod macromolecular suspensions governed by the strong coupling among an excluded volume potential, linear flow, and a magnetic field. The relation provides a reduction of the flow and field driven Smoluchowski equation: from five parameters for coplanar linear flows and magnetic field, to two field parameters. The reduced model distinguishes flows with a rotational component, which map to simple shear (with rate parameter) subject to a transverse magnetic field (with strength parameter), and irrotational flows, for which the reduced model consists of a triaxial extensional flow (with two extensional …


Kinetic Structure Simulations Of Nematic Polymers In Plane Couette Cells. Ii: In-Plane Structure Transitions, M. Gregory Forest, Ruhai Zhou, Qi Wang Jan 2005

Kinetic Structure Simulations Of Nematic Polymers In Plane Couette Cells. Ii: In-Plane Structure Transitions, M. Gregory Forest, Ruhai Zhou, Qi Wang

Mathematics & Statistics Faculty Publications

Nematic, or liquid crystalline, polymer (LCP) composites are composed of large aspect ratio rod-like or platelet macromolecules. This class of nanocomposites exhibits tremendous potential for high performance material applications, ranging across mechanical, electrical, piezoelectric, thermal, and barrier properties. Fibers made from nematic polymers have set synthetic materials performance standards for decades. The current target is to engineer multifunctional films and molded parts, for which processing flows are shear-dominated. Nematic polymer films inherit anisotropy from collective orientational distributions of the molecular constituents and develop heterogeneity on length scales that are, as yet, not well understood and thereby uncontrollable. Rigid LCPs in …


Advances In Space Radiation Shielding Codes, John W. Wilson, Ram K. Tripathi, Garry D. Qualls, Francis A. Cucinotta, Richard E. Prael, John W. Norbury, John H. Heinbockel, John Tweed, Giovanni De Angelis Jan 2002

Advances In Space Radiation Shielding Codes, John W. Wilson, Ram K. Tripathi, Garry D. Qualls, Francis A. Cucinotta, Richard E. Prael, John W. Norbury, John H. Heinbockel, John Tweed, Giovanni De Angelis

Mathematics & Statistics Faculty Publications

Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from …