Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electronic Thesis and Dissertation Repository

2016

Discipline
Keyword

Articles 1 - 16 of 16

Full-Text Articles in Physics

Nanoscale Thermal And Electronic Properties Of Thin Films Of Graphene And Organic Polyradicals, Sabastine Chukwuemeka Ezugwu Dec 2016

Nanoscale Thermal And Electronic Properties Of Thin Films Of Graphene And Organic Polyradicals, Sabastine Chukwuemeka Ezugwu

Electronic Thesis and Dissertation Repository

Ultrathin film materials have attracted significant attention in light of their potential applications in very large scale integrated electronics and data storage. For instance, the amount of data that can be addressed and stored in a memory device scales inversely with the thinness of the active layer of these components. In our thesis, we have developed a suite of scanning-probe and nano-optical techniques focused on understanding the electronic surface properties and the thermal conductivity of ultrathin materials. We discuss a few specific examples in which we applied these techniques towards improved performance of thin films of graphene and organic polyradicals …


Static Magnetic Field Interactions Of Medical Devices In The Mri Environment, Spencer Baird Parent Dec 2016

Static Magnetic Field Interactions Of Medical Devices In The Mri Environment, Spencer Baird Parent

Electronic Thesis and Dissertation Repository

Background: The current procedures and guidelines for testing medical devices require that conservative testing be carried-out using the “worst-case” device or device configuration for each interaction (force, torque, heating, et cetera) of importance, and the results of those tests be used to inform regulatory labeling for that device. One of the most difficult elements of carrying out the above procedure is the determination of what represents a “worst-case” device or device configuration. A simulation “pipeline” would enable a systematic procedure for identification of the worst-case device or device configuration for magnetic force from an otherwise impossibly large set of options. …


Development Of Ultrasonic Techniques For Characterization Of Liquid Mixtures, William A. Cooke Sep 2016

Development Of Ultrasonic Techniques For Characterization Of Liquid Mixtures, William A. Cooke

Electronic Thesis and Dissertation Repository

To evaluate the suitability of ultrasonic techniques for on-line process monitoring applications, an ultrasonic probe was used to measure acoustic velocity, acoustic impedance, and isentropic compressibility of hydrocarbons (including n-, iso-, and cycloalkanes, toluene, mineral oil, and crude oil) and polar liquids (alcohols, water, salt water) over a temperature range of 25-60°C. Temperature, carbon chain length, molecular shape, and intermolecular forces had significant effects on ultrasonic parameters. Relationships between media characteristics and observed ultrasonic parameters were modeled using empirical-least squares equations. The same parameters were measured in binary mixtures of hydrocarbons in heptane, as well as polar liquids in ethanol. …


Dicke’S Superradiance In Astrophysics, Fereshteh Rajabi Sep 2016

Dicke’S Superradiance In Astrophysics, Fereshteh Rajabi

Electronic Thesis and Dissertation Repository

It is generally assumed that in the interstellar medium much of the emission emanating from atomic and molecular transitions within a radiating gas happen independently for each atom or molecule, but as was pointed out by R. H. Dicke in a seminal paper several decades ago this assumption does not apply in all conditions. As will be discussed in this thesis, and following Dicke’s original analysis, closely packed atoms/molecules can interact with their common electromagnetic field and radiate coherently through an effect he named superradiance. Superradiance is a cooperative quantum mechanical phenomenon characterized by high intensity, spatially compact, burst-like features …


Parametric Design, Modeling, And Optical Evaluation Of Retroreflective Prismatic Structures, Sama Hussein Aug 2016

Parametric Design, Modeling, And Optical Evaluation Of Retroreflective Prismatic Structures, Sama Hussein

Electronic Thesis and Dissertation Repository

Retroreflectors (RR) are defined as passive optical structures that redirect incident light to its originating source. Specific types of retroreflectors called inverted cubes (ICs) function through total internal reflection (TIR) and are used in various applications such as measurement tools, traffic signs and automotive rear and side lighting. This thesis aims to model, analyze, fabricate and study a novel type of IC retroreflectors called right triangular prism (RTP). A parametric approach is used to model existing IC geometries from a generic unit cube and is then implemented to model the novel RTP geometry. Those elements are then tested by optical …


Self-Assembled Copper Nanoparticle Superlattices On Graphene Thin Films, Tianhao Ouyang Aug 2016

Self-Assembled Copper Nanoparticle Superlattices On Graphene Thin Films, Tianhao Ouyang

Electronic Thesis and Dissertation Repository

Recently, Giovannetti et al. successfully demonstrated that some metals (such as Cu and Au) only have weak van der waals interaction with graphene and thus can only form weak bonding without severely shifting graphene’s band structure, which describes the energies range of the electrons in the material. Therefore, this opens up windows for graphene enhancement without greatly changing its properties. Furthermore, Zhou et al. later suggested the possibility of self-assembling periodic arrays of alkali atoms on graphene. In our group, graphene thin films fabricated in a cost effective way using solution-processed methods have been used extensively, including decorating …


Fractional Charge Methods For Correcting Approximate Kohn-Sham Potentials, Darya N. Komsa Aug 2016

Fractional Charge Methods For Correcting Approximate Kohn-Sham Potentials, Darya N. Komsa

Electronic Thesis and Dissertation Repository

The Kohn-Sham density functional theory relies on approximating the exchange-correlation energy functional or the corresponding potential. The behavior of the exchange-correlation potential as a function of position in a system can be used to detect and correct deficiencies of the parent functional. The too-fast decay of the potentials derived from common density functionals is a major problem, because it causes inaccurate Rydberg excitation energies and erroneous fractional charges in dissociating molecules. An efficient method to correct the shape of the exchange-correlation potential was proposed by Gaiduk et al. [A. P. Gaiduk, D. S. Firaha, and V. N. Staroverov, Phys. Rev. …


Omcvd Gold Nanoparticles Covalently Attached To Polystyrene For Biosensing Applications, Sivayini Kandeepan Jul 2016

Omcvd Gold Nanoparticles Covalently Attached To Polystyrene For Biosensing Applications, Sivayini Kandeepan

Electronic Thesis and Dissertation Repository

Remarkable developments and successes were witnessed in the fabrication and implementation of optical sensors based on localized surface plasmon resonance (LSPR) for the investigation of chemical and biological material quantities and to detect lethal diseases such as cancer in early stages. Gold nanoparticles (AuNPs) are ideal candidate for sensing purposes due to their chemical stability, ease of surface functionalization and strong LSPR in the visible range. Although there are several designs of sensors published, most of them are still limited to small scale research laboratory use partly due to their high cost of fabrication and waste management, in particular critical …


Digging Deeper With Diffuse Correlation Spectroscopy, Kyle J. Verdecchia Jul 2016

Digging Deeper With Diffuse Correlation Spectroscopy, Kyle J. Verdecchia

Electronic Thesis and Dissertation Repository

Patients with neurological diseases are vulnerable to cerebral ischemia, which can lead to brain injury. In the intensive care unit (ICU), neuromonitoring techniques that can detect flow reductions would enable timely administration of therapies aimed at restoring adequate cerebral perfusion, thereby avoiding damage to the brain. However, suitable bedside neuromonitoring methods sensitive to changes of blood flow and/or oxygen metabolism have yet to be established.

Near-infrared spectroscopy (NIRS) is a promising technique capable of non-invasively monitoring flow and oxygenation. Specifically, diffuse correlation spectroscopy (DCS) and time-resolved (TR) NIRS can be used to monitor blood flow and tissue oxygenation, respectively, and …


Hyperpolarized 3he Magnetic Resonance Imaging Phenotypes Of Chronic Obstructive Pulmonary Disease, Damien Pike Jul 2016

Hyperpolarized 3he Magnetic Resonance Imaging Phenotypes Of Chronic Obstructive Pulmonary Disease, Damien Pike

Electronic Thesis and Dissertation Repository

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the world. Identifying clinically relevant COPD phenotypes has the potential to reduce the global burden of COPD by helping to alleviate symptoms, slow disease progression and prevent exacerbation by stratifying patient cohorts and forming targeted treatment plans. In this regard, quantitative pulmonary imaging with hyperpolarized 3He magnetic resonance imaging (MRI) and thoracic computed tomography (CT) have emerged as ways to identify and measure biomarkers of lung structure and function. 3He MRI may be used as a tool to probe both functional and structural properties of the lung …


Optimizing Respiratory Gated Intensity Modulated Radiation Therapy Planning And Delivery Of Early-Stage Non-Small Cell Lung Cancer, Ilma Xhaferllari Jul 2016

Optimizing Respiratory Gated Intensity Modulated Radiation Therapy Planning And Delivery Of Early-Stage Non-Small Cell Lung Cancer, Ilma Xhaferllari

Electronic Thesis and Dissertation Repository

Stereotactic ablative body radiotherapy (SABR) is the standard of care for inoperable early-stage non-small cell lung cancer (NSCLC) patients. However, thoracic tumours are susceptible to respiratory motion and, if unaccounted for, can potentially lead to dosimetric uncertainties. Respiratory gating is one method that limits treatment delivery to portions of the respiratory cycle, but when combined with intensity-modulated radiotherapy (IMRT), requires rigorous verification. The goal of this thesis is to optimize respiratory gated IMRT treatment planning and develop image-guided strategies to verify the dose delivery for future early-stage NSCLC patients.

Retrospective treatment plans were generated for various IMRT delivery techniques, including …


Dynamics Of Discs In A Nematic Liquid Crystal, Alena Antipova May 2016

Dynamics Of Discs In A Nematic Liquid Crystal, Alena Antipova

Electronic Thesis and Dissertation Repository

In this thesis, a new way of simulating a two-way coupling between a liquid crystal and an immersed object is proposed. It can be used for objects of various geometries and can be expanded to be used for an object of any geometry. Additionally, a simple yet effective model was suggested for calculations of transmitted light through a nematic liquid crystal sample. This model allowed us to clarify the behavior of a ferromagnetic disc in a nematic liquid crystal observed in experiments and incorrectly interpreted at that time.

Our simulations have demonstrated the following: in the absence of external forces …


Simulation Of Heterogeneous Colloidal Particles Immersed In Liquid Crystals, Setarehalsadat Changizrezaei Apr 2016

Simulation Of Heterogeneous Colloidal Particles Immersed In Liquid Crystals, Setarehalsadat Changizrezaei

Electronic Thesis and Dissertation Repository

This thesis describes an investigation of interactions between colloidal particles immersed in a liquid crystal. The presence of colloidal particles in the liquid crystal distorts the director field distorted from its uniform orientation. These elastic distortions produce topological defects around the particles, which induce anisotropic interactions between them, and these anisotropic interactions can be used to manufacture non-closed packed colloidal crystals, such as diamond lattices, which are interesting in photonic applications. First, different types of liquid crystals, the mathematical tools to describe the anisotropic nature of liquid crystals, the Landau-de Gennes free-energy model to investigate the particle’s interaction, and different …


Optical Characterization Of Anisotropic Interfaces, Renjie Hou Apr 2016

Optical Characterization Of Anisotropic Interfaces, Renjie Hou

Electronic Thesis and Dissertation Repository

The understanding of optical properties of surfaces and interfaces are critical for the development of new technologies ranging from photonics to molecular electronics. Knowing for example the orientation of molecules functionalized onto a surface yields valuable information about the macroscopic properties of the resulting surface. The optical properties can be tuned using various strategies such as molecular functionalization or patterning of meta-structures that ultimately interact with light in a rational way. Advanced optical and spectroscopy methods allowing one to probe such surfaces are therefore key to correlate properties and surface functionalization.

In this thesis, multiple approaches have been taken to …


Universal Scaling Properties After Quantum Quenches, Damian Andres Galante Mar 2016

Universal Scaling Properties After Quantum Quenches, Damian Andres Galante

Electronic Thesis and Dissertation Repository

In this Thesis, the problem of a quantum quench in quantum field theories is analyzed. This involves studying the real time evolution of observables in a theory that undergoes a change in one of its couplings. These quenches are then characterized by two parameters: $\delta \lambda$, the magnitude of the quench and most importantly, $\delta t$, the quench duration. In contrast to previous studies of abrupt quenches in the condensed matter theory community, we will be interested in smooth quenches with a finite $\delta t$.

Motivated by existing results in holographic theories, we studied the problem of a fast smooth …


The Study Of Nano-Optics In Hybrid Systems, Marek J. Brzozowski Jan 2016

The Study Of Nano-Optics In Hybrid Systems, Marek J. Brzozowski

Electronic Thesis and Dissertation Repository

In this thesis, we study the quantum light-matter interaction in polaritonic heterostructures. These systems are made by combining various nanocomponents, such as quantum dots, graphene films, metallic nanoparticles and metamaterials. These heterostructures are used to develop new optoelectronic devices due to the interaction between nanocomposites.

Photoluminescence quenching and absorption spectrum are determined and an explanatory theory is developed for these polaritonic heterostructures. Photoluminescence quenching is evaluated for a graphene, metallic nanoparticle and quantum dot system. It is shown that average distance between nanocomposites or concentration of nanocomposites affect the output these system produced. Photoluminescence quenching was also evaluated for a …