Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Department of Physics Publications

Drizzle

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Scaling Of Drizzle Virga Depth With Cloud Thickness For Marine Stratocumulus Clouds, Fan Yang, Edward P. Luke, Pavlos Kollias, Alexander Kostinski, Andrew M. Vogelmann Apr 2018

Scaling Of Drizzle Virga Depth With Cloud Thickness For Marine Stratocumulus Clouds, Fan Yang, Edward P. Luke, Pavlos Kollias, Alexander Kostinski, Andrew M. Vogelmann

Department of Physics Publications

Drizzle is frequently observed in marine stratocumulus clouds and plays a crucial role in cloud lifetime and the radiation budget. Most drizzling stratocumulus clouds form drizzle virga below cloud base, where subcloud scavenging and evaporative cooling are important. We use unique ground‐based cloud radar observations (1) to examine the statistical properties of drizzle frequency and virga depth and (2) to test a simple analytical relationship derived between drizzle virga thickness (Hv) and cloud thickness (Hc). Observations show that 83% of marine stratocumulus clouds are drizzling although only 31% generate surface precipitation. The analytical expression …


Cloud Droplets To Drizzle: Contribution Of Transition Drops To Microphysical And Optical Properties Of Marine Stratocumulus Clouds, S Glienke, A. Kostinski, J P. Fugal, R. A. Shaw, S Borrmann, J Stith Aug 2017

Cloud Droplets To Drizzle: Contribution Of Transition Drops To Microphysical And Optical Properties Of Marine Stratocumulus Clouds, S Glienke, A. Kostinski, J P. Fugal, R. A. Shaw, S Borrmann, J Stith

Department of Physics Publications

Aircraft measurements of the ubiquitous marine stratocumulus cloud type, with over 3000 km of in situ data from the Pacific during the Cloud System Evolution in the Trades experiment, show the ability of the Holographic Detector for Clouds (HOLODEC) instrument to smoothly interpolate the small and large droplet data collected with Cloud Droplet Probe and 2DC instruments. The combined, comprehensive instrument suite reveals a surprisingly large contribution in the predrizzle size range of 40–80 μm (transition droplets, or drizzlets), a range typically not measured and assumed to reside in a condensation‐to‐collision minimum between cloud droplet and drizzle modes. Besides shedding …