Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Data Supporting The Paper "Aerosol Mediated Glaciation Of Mixed-Phase Clouds: Steady-State Laboratory Measurements", N. Desai, K. K. Chandrakar, G. Kinney, W. Cantrell, R. A. Shaw Jun 2019

Data Supporting The Paper "Aerosol Mediated Glaciation Of Mixed-Phase Clouds: Steady-State Laboratory Measurements", N. Desai, K. K. Chandrakar, G. Kinney, W. Cantrell, R. A. Shaw

Department of Physics Publications

No abstract provided.


Tailoring Of The Electronic Property Of Zn-Btc Metal–Organic Framework Via Ligand Functionalization: An Ab Initio Investigation, Gemechis Degaga, Ravindra Pandey, Chansi Gupta, Lalit Bharadwaj May 2019

Tailoring Of The Electronic Property Of Zn-Btc Metal–Organic Framework Via Ligand Functionalization: An Ab Initio Investigation, Gemechis Degaga, Ravindra Pandey, Chansi Gupta, Lalit Bharadwaj

Department of Physics Publications

Metal–organic frameworks (MOFs) are porous materials of recent interest due to their promising properties for technological applications. In this paper, the structure–property relationships of pristine and functionalized Zn-BTC (Zn3(BTC)2) MOFs are investigated. The results based on density functional theory (DFT) find that MOFs with coordinatively saturated secondary building units (SBU) are metallic, and MOFs with coordinatively unsaturated SBU are semi-conducting. The ligand functionalization with electron acceptor (cyano-) and electron donor (amino-) groups appears to tailor the electronic properties of Zn-BTC MOFs; amino-functionalization led to a significant upward shift of the band-edges …


Leidenfrost Pattern Formation And Boiling, Prasanth Prabhakaran, Alexei Krekhov, Eberhard Bodenschatz, Stephan Weiss Apr 2019

Leidenfrost Pattern Formation And Boiling, Prasanth Prabhakaran, Alexei Krekhov, Eberhard Bodenschatz, Stephan Weiss

Department of Physics Publications

We report on Leidenfrost patterns and boiling with compressed sulfur hexafluoride ( SF6). The experiments were carried out in a large aspect ratio Rayleigh–Bénard convection cell, where the distance between the horizontal plates is comparable with the capillary length of the working fluid. Pressures and temperatures were chosen such that the bottom plate was above and the top plate was below the liquid–vapor transition temperature of SF6. As a result, SF6 vapor condenses at the top plate and forms drops that grow in size. Leidenfrost patterns are formed as the drops do not fall but …


The Dawn Of Non-Hermitian Optics, Ramy El-Ganainy, Mercedeh Khajavikhan, Demetrios Christodoulides, Sahin Ozdemir Mar 2019

The Dawn Of Non-Hermitian Optics, Ramy El-Ganainy, Mercedeh Khajavikhan, Demetrios Christodoulides, Sahin Ozdemir

Department of Physics Publications

Recent years have seen a tremendous progress in the theory and experimental implementations of non-Hermitian photonics, including all-lossy optical systems as well as parity-time symmetric systems consisting of both optical loss and gain. This progress has led to a host of new intriguing results in the physics of light–matter interactions with promising potential applications in optical sciences and engineering. In this comment, we present a brief perspective on the developments in this field and discuss possible future research directions that can benefit from the notion of non-Hermitian engineering.


Data Supporting The Paper "Extensive Soot Compaction By Cloud Processing From Laboratory And Field Observations", Janarjan Bhandari, Swarup China, Kamal Kant Chandrakar, Greg Kinney, Will Cantrell, Raymond Shaw, Lynn R. Mazzoleni, Giulia Girotto, Noopur Sharma, Kyle Gorkowski, Stefania Gilardoni, Stefano Decesari, Maria Cristina Facchini, Nicola Zanca, Giulia Pavese, Francesco Esposito, Manvendra Dubey, Allison Aiken, Rajan K. Chakrabarty, Hans Moosmüller, Timothy B. Onasch, Rahul A. Zaveri, Barbara Scarnato, Paolo Fialho, Claudio Mazzoleni Feb 2019

Data Supporting The Paper "Extensive Soot Compaction By Cloud Processing From Laboratory And Field Observations", Janarjan Bhandari, Swarup China, Kamal Kant Chandrakar, Greg Kinney, Will Cantrell, Raymond Shaw, Lynn R. Mazzoleni, Giulia Girotto, Noopur Sharma, Kyle Gorkowski, Stefania Gilardoni, Stefano Decesari, Maria Cristina Facchini, Nicola Zanca, Giulia Pavese, Francesco Esposito, Manvendra Dubey, Allison Aiken, Rajan K. Chakrabarty, Hans Moosmüller, Timothy B. Onasch, Rahul A. Zaveri, Barbara Scarnato, Paolo Fialho, Claudio Mazzoleni

Department of Physics Publications

No abstract provided.


Natural Graphite Cuboids, Andrey Korsakov, Olga V. Rezvukhina, John Jaszczak, Dmitriy I. Rezvukhin, Denis Mikhailenko Feb 2019

Natural Graphite Cuboids, Andrey Korsakov, Olga V. Rezvukhina, John Jaszczak, Dmitriy I. Rezvukhin, Denis Mikhailenko

Department of Physics Publications

Graphite cuboids are abundant in ultrahigh-pressure metamorphic rocks and are generally interpreted as products of partial or complete graphitization of pre-existing diamonds. The understanding of the graphite cuboid structure and its formation mechanisms is still very limited compared to nanotubes, cones, and other carbon morphologies. This paper is devoted to the natural occurrences of graphite cuboids in several metamorphic and magmatic rocks, including diamondiferous metamorphic assemblages. The studied cuboids are polycrystalline aggregates composed either of numerous smaller graphite cuboids with smooth surfaces or graphite flakes radiating from a common center. Silicates, oxides, and sulphides are abundant in all the samples …


Data Supporting The Paper "Scaling Of An Atmospheric Model To Simulate Turbulence And Cloud Microphysics In The Pi Chamber", Subin Thomas, Mikhail S. Ovchinnikov, Fan Yang, Dennis Van Der Voort, Will Cantrell, Steven K. Krueger, Raymond Shaw Feb 2019

Data Supporting The Paper "Scaling Of An Atmospheric Model To Simulate Turbulence And Cloud Microphysics In The Pi Chamber", Subin Thomas, Mikhail S. Ovchinnikov, Fan Yang, Dennis Van Der Voort, Will Cantrell, Steven K. Krueger, Raymond Shaw

Department of Physics Publications

No abstract provided.