Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Christian Binek Publications

Ferromagnetic

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Temperature Dependence Of The Training Effect In Exchange Coupled Ferromagnetic Bilayers, Christian Binek, Srinivas Polisetty, Sarbeswar Sahoo Nov 2008

Temperature Dependence Of The Training Effect In Exchange Coupled Ferromagnetic Bilayers, Christian Binek, Srinivas Polisetty, Sarbeswar Sahoo

Christian Binek Publications

The temperature dependence of the training effect is studied in an exchange coupled thin-film bilayer composed of a hard ferromagnetic pinning (CoPtCrB) layer in proximity of a soft ferromagnetic pinned (CoCr) layer. Interlayer exchange shifts the hysteresis loops of the soft layer along the magnetic-field axis. This shift is quantified by the bias field in far reaching analogy to the exchange bias field of conventional antiferromagnetic/ferromagnetic heterostructures. A ferromagnetic domain state induced in the hard layer experiences aging very similar to the training behavior of the antiferromagnetic domain state in conventional exchange bias systems. Training originates from changes in ...


Superspin Glass Behaviour Of Interacting Ferromagnetic Nanoparticles In Discontinuous Magnetic Multilayers, Christian Binek Oct 2000

Superspin Glass Behaviour Of Interacting Ferromagnetic Nanoparticles In Discontinuous Magnetic Multilayers, Christian Binek

Christian Binek Publications

Discontinuous magnetic multilayers [Co80Fe20(t)/Al2O3(3nm)]10 with t = 0.9 and 1.0nm are studied by SQUID magnetometry and ac susceptibility. Owing to dipolar interaction the superparamagnetic cluster systems undergo collective glass-like freezing upon cooling. While both samples exhibit very similar glass temperatures Tg » 45 K and critical exponents zn » 10 and g » 1.4 as obtained from the temperature dependencies of the relaxation time, t, and the nonlinear susceptibility, c3, dynamical scaling reveals different critical exponents, b(0.9nm) »1.0 and b(1.0nm) » 0.6, respectively.