Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

All HMC Faculty Publications and Research

Ground states

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Physics

Double Excitations Within Time-Dependent Density Functional Theory Linear Response, Neepa T. Maitra, Fan Zhang, Robert J. Cave, Kieron Burke Apr 2004

Double Excitations Within Time-Dependent Density Functional Theory Linear Response, Neepa T. Maitra, Fan Zhang, Robert J. Cave, Kieron Burke

All HMC Faculty Publications and Research

Within the adiabatic approximation, time-dependent density functional theory yields only single excitations. Near states of double excitation character, the exact exchange–correlation kernel has a strong dependence on frequency. We derive the exact frequency-dependent kernel when a double excitation mixes with a single excitation, well separated from the other excitations, in the limit that the electron–electron interaction is weak. Building on this, we construct a nonempirical approximation for the general case, and illustrate our results on a simple model.


An Ab Initio Study Of The Mono- And Difluorides Of Krypton, Gerald J. Hoffman, Laura A. Swafford '97, Robert J. Cave Dec 1998

An Ab Initio Study Of The Mono- And Difluorides Of Krypton, Gerald J. Hoffman, Laura A. Swafford '97, Robert J. Cave

All HMC Faculty Publications and Research

Results from ab initio calculations at the CCSD(T) level of theory are presented for krypton monofluoride (KrF), krypton monofluoride cation (KrF+), linear, ground-state krypton difluoride (KrF2), the triplet state of krypton difluoride, and the krypton–fluorine van der Waals complex (Kr–F2). These are the first calculations demonstrating that KrF is a bound molecule, in agreement with experimental observation. When corrected for basis-set superposition error, the calculated potential displays quantitative agreement with the attractive wall of the experimentally measured potential curve. Results are also presented for KrF+ and linear KrF2 which yield accurate values for their dissociation energies. The triplet state of …


Calculation Of Electronic Coupling Matrix Elements For Ground And Excited State Electron Transfer Reactions: Comparison Of The Generalized Mulliken–Hush And Block Diagonalization Methods, Robert J. Cave, Marshall D. Newton Jun 1997

Calculation Of Electronic Coupling Matrix Elements For Ground And Excited State Electron Transfer Reactions: Comparison Of The Generalized Mulliken–Hush And Block Diagonalization Methods, Robert J. Cave, Marshall D. Newton

All HMC Faculty Publications and Research

Two independent methods are presented for the nonperturbative calculation of the electronic coupling matrix element (Hab) for electron transfer reactions using ab initio electronic structure theory. The first is based on the generalized Mulliken–Hush (GMH) model, a multistate generalization of the Mulliken Hush formalism for the electronic coupling. The second is based on the block diagonalization (BD) approach of Cederbaum, Domcke, and co-workers. Detailed quantitative comparisons of the two methods are carried out based on results for (a) several states of the system Zn2OH2+ and (b) the low-lying states of the benzene–Cl atom complex and its contact ion pair. Generally …


A Theoretical Investigation Of The Ground And Low‐Lying Excited States Of Butadiene Radical Cation, Robert J. Cave, Michael G. Perrott '90 Mar 1992

A Theoretical Investigation Of The Ground And Low‐Lying Excited States Of Butadiene Radical Cation, Robert J. Cave, Michael G. Perrott '90

All HMC Faculty Publications and Research

Results are presented from ab initio calculations on the ground and several low‐lying excited states of the butadiene radical cation. In particular, we have calculated geometries for the ground and several excited states at the multiconfiguration self‐consistent field level and characterized the planar stationary points. The vertical ionization potentials from the neutral molecule ground state and vertical excitation energies at the computed equilibrium geometry of the cation were also examined. A variety of methods were tested for the calculation of ionization potentials and excitation energies, including multiconfiguration self‐consistent field, multireference singles and doubles configuration interaction (with and without size‐consistency correction), …