Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Using Superatomic Clusters And Charge Transfer Ligands To Control Electronic Characteristics Of Phosphorene Nanoribbons And Phosphorene Monolayer, Ryan Lambert Jan 2023

Using Superatomic Clusters And Charge Transfer Ligands To Control Electronic Characteristics Of Phosphorene Nanoribbons And Phosphorene Monolayer, Ryan Lambert

Theses and Dissertations

Phosphorene is a two-dimensional electron poor p-type semiconductor with high carrier mobility and great promise for applications in electronics and optoelectronics. As the main theme in this dissertation, the following work represents different investigations of various electronic properties associated with phosphorene. Most notable are the findings on charge transfer doping with metal-chalcogenide superatoms which displays novel control of the two most important properties of a semiconductor – the band gap energy and the nature of carriers. By tuning the width of the gap and p-/n-type character of conduction, we gain control over a material’s capacity to play a certain role …


Fabrication Of Metal-Silicon Nanostructures By Reactive Laser Ablation In Liquid, Eric J. Broadhead Jan 2021

Fabrication Of Metal-Silicon Nanostructures By Reactive Laser Ablation In Liquid, Eric J. Broadhead

Theses and Dissertations

Metal-silicon nanostructures are a growing area of research due to their applications in multiple fields such as biosensing and catalysis. In addition, silicon can provide strong support effects to metal nanoparticles while being more cost effective than traditionally used supports, like titania. Traditional wet-chemical methods are capable of synthesizing metal-silicon nanostructures with a variety of composition and nanoparticle shapes, but they often require high temperatures, toxic solvents, strong reducing agents, or need capping agents added to stabilize the nanoparticles. Laser processing is an emerging technique capable of synthesizing metal-silicon composite surfaces that offers a faster, simpler, and greener synthesis route …


Ligand Effects On Electronic, Magnetic, And Catalytic Properties Of Clusters And Cluster Assemblies, Dinesh Bista 9288522 Jan 2021

Ligand Effects On Electronic, Magnetic, And Catalytic Properties Of Clusters And Cluster Assemblies, Dinesh Bista 9288522

Theses and Dissertations

Ligands commonly protect metallic clusters against reacting with outside reactants. However, ligands can also be used to control the redox properties enabling the formation of super donors/acceptors that can donate/accept multiple electrons. This thesis focuses on how the ligands can be used to control the electronic and magnetic features of clusters and ligand stabilized cluster-based assemblies, leading to nano pn junctions with directed transport, the possibility of light-harvesting, and catalysts for cross-coupling reactions. The thesis addresses three distinct classes of clusters and their applications. The first class of cluster “metal chalcogen clusters” is the central idea of the thesis focused …


Investigations Into Structure And Properties Of Atomically-Precise Transition Metal-Chalcogenide Clusters Of Crte And Ligated Cr6te8(Pet3)6, Anthony F. Pedicini Jan 2017

Investigations Into Structure And Properties Of Atomically-Precise Transition Metal-Chalcogenide Clusters Of Crte And Ligated Cr6te8(Pet3)6, Anthony F. Pedicini

Theses and Dissertations

The complete understanding of a clusters electronic structure, the primary mechanisms for its properties and stabilization is necessary in order to functionalize them for use as building blocks within novel materials. First principle theoretical studies have been carried out upon the electronic properties of CrxTey (x = 1 – 6, y = 0 – 8, x + y ≤ 14), as well as for the larger triethylphosphine (PEt3) ligated cluster system of Cr6Te8(PEt3)6. Together, we aim to use the information garnered from the smaller clusters to address …


Fabricating Superhydrophobic And Superoleophobic Surfaces With Multiscale Roughness Using Airbrush And Electrospray, Karam N. Almilaji Jan 2016

Fabricating Superhydrophobic And Superoleophobic Surfaces With Multiscale Roughness Using Airbrush And Electrospray, Karam N. Almilaji

Theses and Dissertations

Examples of superhydrophobic surfaces found in nature such as self-cleaning property of lotus leaf and walking on water ability of water strider have led to an extensive investigation in this area over the past few decades. When a water droplet rests on a textured surface, it may either form a liquid-solid-vapor composite interface by which the liquid droplet partially sits on air pockets or it may wet the surface in which the water replaces the trapped air depending on the surface roughness and the surface chemistry. Super water repellent surfaces have numerous applications in our daily life such as drag …


The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves Jan 2016

The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves

Theses and Dissertations

Ge1-xSnx alloys are among a small class of benign semiconductors with composition tunable bandgaps in the near-infrared spectrum. As the amount of Sn is increased the band energy decreases and a transition from indirect to direct band structure occurs. Hence, they are prime candidates for fabrication of Si-compatible electronic and photonic devices, field effect transistors, and novel charge storage device applications. Success has been achieved with the growth of Ge1-xSnx thin film alloys with Sn compositions up to 34%. However, the synthesis of nanocrystalline alloys has proven difficult due to larger discrepancies (~14%) in …


Non-Conventional Approaches To Syntheses Of Ferromagnetic Nanomaterials, Dustin M. Clifford Jan 2016

Non-Conventional Approaches To Syntheses Of Ferromagnetic Nanomaterials, Dustin M. Clifford

Theses and Dissertations

The work of this dissertation is centered on two non-conventional synthetic approaches to ferromagnetic nanomaterials: high-throughput experimentation (HTE) (polyol process) and continuous flow (CF) synthesis (aqueous reduction and the polyol process). HTE was performed to investigate phase control between FexCo1-x and Co3-xFexOy. Exploration of synthesis limitations based on magnetic properties was achieved by reproducing Ms=210 emu/g. Morphological control of FexCo1-x alloy was achieved by formation of linear chains using an Hext. The final study of the FexCo1-x chains used DoE to …