Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

Ionosphere

2004

Articles 1 - 2 of 2

Full-Text Articles in Physics

Global Dayside Ionospheric Uplift And Enhancements Due To Interplanetary Shock Electric Fields, B. R. Tsurutani, A. Mannucci, B. Ijima, A. Saito, K. Yumoto, M. A. Abdu, J. H.A. Sobral, W. D. Gonzalez, F. L. Guarnieri, T. Tsuda, Bela G. Fejer, T. J. Fuller-Rowell, J. U.O. Kozyra, J. C. Foster, A. Coster, V. M. Vasyliumas Jan 2004

Global Dayside Ionospheric Uplift And Enhancements Due To Interplanetary Shock Electric Fields, B. R. Tsurutani, A. Mannucci, B. Ijima, A. Saito, K. Yumoto, M. A. Abdu, J. H.A. Sobral, W. D. Gonzalez, F. L. Guarnieri, T. Tsuda, Bela G. Fejer, T. J. Fuller-Rowell, J. U.O. Kozyra, J. C. Foster, A. Coster, V. M. Vasyliumas

Bela G. Fejer

[1] The interplanetary shock/electric field event of 5–6 November 2001 is analyzed using ACE interplanetary data. The consequential ionospheric effects are studied using GPS receiver data from the CHAMP and SAC-C satellites and altimeter data from the TOPEX/Poseidon satellite. Data from ∼100 ground-based GPS receivers as well as Brazilian Digisonde and Pacific sector magnetometer data are also used. The dawn-to-dusk interplanetary electric field was initially ∼33 mV/m just after the forward shock (IMF BZ = −48 nT) and later reached a peak value of ∼54 mV/m 1 hour and 40 min later (BZ = −78 nT). The electric field was …


Development Of A Physics-Based Reduced State Kalman Filter For The Ionosphere, Ludger Scherliess, Robert W. Schunk, Jan Josef Sojka, Donald C. Thompson Jan 2004

Development Of A Physics-Based Reduced State Kalman Filter For The Ionosphere, Ludger Scherliess, Robert W. Schunk, Jan Josef Sojka, Donald C. Thompson

All Physics Faculty Publications

A physics-based data assimilation model of the ionosphere is under development as the central part of a Department of Defense/Multidisciplinary University Research Initiative (MURI)-funded program called Global Assimilation of Ionospheric Measurements (GAIM). With the significant increase in the number of ionospheric observations that will become available over the next decade, this model will provide a powerful tool toward an improved specification and forecasting of the global ionosphere, with an unprecedented accuracy and reliability. The goal of this effort will be specifications and forecasts on spatial grids that can be global, regional, or local (25 km × 25 km). The specification/forecast …