Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

2003

All Physics Faculty Publications

Insulators

Articles 1 - 4 of 4

Full-Text Articles in Physics

Measurement Of Conductivity And Charge Storage In Insulators Related To Spacecraftcharging, A. R. Fredrickson, John R. Dennison Jan 2003

Measurement Of Conductivity And Charge Storage In Insulators Related To Spacecraftcharging, A. R. Fredrickson, John R. Dennison

All Physics Faculty Publications

Novel methods have been developed to measure conductivity and charge storage in thin film insulating spacecraft materials subjected to space radiations. For a variety of such samples, conductivity values differ by up to 104 from values based on ASTM standards. Conductivity and charge storage properties are found to be functions of prior radiation history. A highly-charged insulator emits electrons for hours (Malter Effect) after the irradiation beam is turned off. Visible light can be used to induce emission from previously charged samples with shallow traps.


Instrumentation For Studies Of Electron Emission And Charging From Insulators, C. D. Thomson, V. V. Zavyalov, John R. Dennison Jan 2003

Instrumentation For Studies Of Electron Emission And Charging From Insulators, C. D. Thomson, V. V. Zavyalov, John R. Dennison

All Physics Faculty Publications

Making measurements of electron emission properties of insulators is difficult since insulators can charge either negatively or positively under charge particle bombardment. In addition, high incident energies or high fluences can result in modification of a material’s conductivity, bulk and surface charge profile, structural makeup through bond breaking and defect creation, and emission properties. We discuss here some of the charging difficulties associated with making insulator-yield measurements and review the methods used in previous studies of electron emission from insulators. We present work undertaken by our group to make consistent and accurate measurements of the electron/ion yield properties for numerous …


Charge Storage, Conductivity And Charge Profiles Of Insulators As Related To Spacecraft Charging, John R. Dennison, A. R. Frederickson, Prasanna Swaminathan Jan 2003

Charge Storage, Conductivity And Charge Profiles Of Insulators As Related To Spacecraft Charging, John R. Dennison, A. R. Frederickson, Prasanna Swaminathan

All Physics Faculty Publications

Dissipation of charges built up near the surface of insulators due to space environment interaction is central to understanding spacecraft charging. Conductivity of insulating materials is key to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. To understand these processes requires knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and charge transport within the insulator, and how the profile of trapped charge affects the transport and emission of charges from insulators. One must consider generation of mobile electrons and holes, their trapping, thermal detrapping, mobility and …


Comparison Of Classical And Charge Storage Methods For Determining Conductivity Of Thin Film Insulators, Prasanna Swaminathan, A. R. Frederickson, John R. Dennison, Alec Sim, J. Brunson, Eric Crapo Jan 2003

Comparison Of Classical And Charge Storage Methods For Determining Conductivity Of Thin Film Insulators, Prasanna Swaminathan, A. R. Frederickson, John R. Dennison, Alec Sim, J. Brunson, Eric Crapo

All Physics Faculty Publications

Conductivity of insulating materials is a key parameter to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. Classical ASTM and IEC methods to measure thin film insulator conductivity apply a constant voltage to two electrodes around the sample and measure the resulting current for tens of minutes. However, conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator. Charge decay methods expose one side of the insulator in vacuum to sequences of charged particles, light, and plasma, with a metal electrode …