Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

2003

All Physics Faculty Publications

Gravitational waves

Articles 1 - 2 of 2

Full-Text Articles in Physics

Lisa Data Analysis: Doppler Demodulation, Neil J. Cornish, Shane L. Larson Jan 2003

Lisa Data Analysis: Doppler Demodulation, Neil J. Cornish, Shane L. Larson

All Physics Faculty Publications

The orbital motion of the Laser Interferometer Space Antenna (LISA) produces amplitude, phaseand frequency modulation of a gravitational wave signal. The modulations have the effect of spreading a monochromatic gravitational wave signal across a range of frequencies. The modulations encode useful information about the source location and orientation, but they also have the deleteriousaffect of spreading a signal across a wide bandwidth, thereby reducing the strength of the signalrelative to the instrument noise. We describe a simple method for removing the dominant, Doppler,component of the signal modulation. The demodulation reassembles the power from a monochromatic source into a narrow spike, …


Lisa, Binary Stars, And The Mass Of The Graviton, Curt Cutler, William A. Hiscock, Shane L. Larson Jan 2003

Lisa, Binary Stars, And The Mass Of The Graviton, Curt Cutler, William A. Hiscock, Shane L. Larson

All Physics Faculty Publications

We extend and improve earlier estimates of the ability of the proposed LISA (Laser Interferometer Space Antenna) gravitational wave detector to place upper bounds on the graviton mass mg by comparing the arrival times of gravitational and electromagnetic signals from binary star systems. We show that the best possible limit on mg obtainable this way is ∼50 times better than the current limit set by solar system measurements. Among currently known, well-understood binaries, 4U1820-30 is the best for this purpose; LISA observations of 4U1820-30 should yield a limit ≈3-4 times better than the present solar system bound. AM …