Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

1998

Lidar

Articles 1 - 2 of 2

Full-Text Articles in Physics

Full-Wave Modeling Of Small-Scale Gravity Waves Using Airborne Lidar And Observations Of The Hawaiian Airglow (Aloha-93) O(1s) Images & Coincident Na Wind/Temperature Lidar Measurements, M. P. Hickey, Michael J. Taylor, C. S. Gardner, C. R. Gibbons Mar 1998

Full-Wave Modeling Of Small-Scale Gravity Waves Using Airborne Lidar And Observations Of The Hawaiian Airglow (Aloha-93) O(1s) Images & Coincident Na Wind/Temperature Lidar Measurements, M. P. Hickey, Michael J. Taylor, C. S. Gardner, C. R. Gibbons

All Physics Faculty Publications

Measurements were made of mesospheric gravity waves in the OI (5577 Å) nightglow observed from Maui, Hawaii, during the Airborne Lidar and Observations of Hawaiian Airglow (ALOHA-93) campaign. Clear, monochromatic gravity waves were observed on several nights. By using a full-wave model that realistically includes the major physical processes in this region, we have simulated the propagation of four waves through the mesopause region and calculated the O(1 S) nightglow response to the waves. Mean winds derived from Na wind/temperature lidar observations were employed in the computations. Wave amplitudes were calculated based on the requirement that the observed and simulated …


Observational Limits For Lidar, Radar And Airglow Imager Measurements Of Gravity Wave Parameters, C. S. Gardner, Michael J. Taylor Mar 1998

Observational Limits For Lidar, Radar And Airglow Imager Measurements Of Gravity Wave Parameters, C. S. Gardner, Michael J. Taylor

All Physics Faculty Publications

By examining the observational limits and biases for lidar, radar, and airglow imager measurements of middle atmosphere gravity waves, we provide plausible explanations for the characteristics of the monochromatic wave parameters that have been reported during the past decade. The systematic dependencies of vertical and horizontal wavelength on wave period, reported in many lidar and some radar studies, are associated with diffusive damping. The prominent waves with the largest amplitudes, most often observed by lidars and radars, are those with vertical phase speeds near the diffusive damping limit. The narrow range of horizontal phase velocities of the waves seen by …