Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Temperatures In The Mid-Latitude Mesosphere During Sudden Stratospheric Warmings As Determined From Rayleigh Lidar Data, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron Dec 2013

Temperatures In The Mid-Latitude Mesosphere During Sudden Stratospheric Warmings As Determined From Rayleigh Lidar Data, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron

Graduate Student Posters

Sudden Stratospheric Warmings (SSWs) are major disturbances in the polar region of the winter hemisphere that cause major changes in stratospheric temperature and circulation. SSWs are characterized by a temperature increase of tens of degrees Kelvin, averaged over 60°-90° latitude, and a weakening of the polar vortex that persists for the order of a week at the 10 hPa level (roughly 32 km) [Labitzke and Naujokat, 2000]. The polar vortices are cyclones centered on both of the Earth’s poles that are present from the mid-troposphere to the lower stratosphere. Eastward zonal winds define the strong polar vortices in the winter. …


Satellite And Ground-Based Measurements Of Mesospheric Temperature Variability Over Cerro Pachon, Chile (30.3° S), Jonathan Pugmire, Michael J. Taylor, Yucheng Zhao, P. D. Pautet, J. M. Russell Oct 2013

Satellite And Ground-Based Measurements Of Mesospheric Temperature Variability Over Cerro Pachon, Chile (30.3° S), Jonathan Pugmire, Michael J. Taylor, Yucheng Zhao, P. D. Pautet, J. M. Russell

Graduate Student Posters

— Observations of mesospheric OH (6,2) rotational temperatures by the Utah State University Mesospheric Temperature Mapper (MTM) located at the Andes Lidar Observatory, Cerro Pachon, Chile (30.3◦ S, 70.7◦ W) reveal a large range of nightly variations induced by atmospheric gravity waves and tides, as well as strong seasonal oscillations. This study investigates MTM temperature variability over the past 4 years comprising over 800 nights of high-quality data and compares the results with MTM measurements from Maui, Hawaii (2001-2005) and coincident mesospheric temperature measurement by the SABER instrument on the NASA TIMED satellite.


Ground-Based Observations With A Rayleigh-Mie-Raman Lidar From 15-120 Km, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, David L. Barton, Matthew T. Emerick Oct 2013

Ground-Based Observations With A Rayleigh-Mie-Raman Lidar From 15-120 Km, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, David L. Barton, Matthew T. Emerick

Graduate Student Posters

Rayleigh lidar systems have historically made ground-based observations of the upper atmosphere (stratosphere and mesosphere) from 35-90 km. This technology has helped fill the data collection gap between the troposphere and space. Recently our Rayleigh lidar group at the Atmospheric Lidar Observatory on the campus of Utah State University (42° N, 112° W) upgraded the original lidar system in order to extend the measurement range for neutral densities and temperatures to higher altitudes and has increased the upper limit, so far, from 90 to 110 km. Next, we will extend the lower altitude limit downward to 15 km. This will …


Observations Of Mesospheric Temperature Variability Over The Andes, Jonathan Pugmire, Michael J. Taylor, Yucheng Zhao, P. D. Paudet, James M. Russell Jun 2013

Observations Of Mesospheric Temperature Variability Over The Andes, Jonathan Pugmire, Michael J. Taylor, Yucheng Zhao, P. D. Paudet, James M. Russell

Graduate Student Posters

Observations of mesospheric OH(6,2) rotational temperatures by the Utah State University Mesospheric Temperature Mapper (MTM) located at the Andes Lidar Observatory, Cerro Pachon, Chile (30.3°S, 70.7°S) reveal a large range of nightly variations induced by atmospheric gravity waves and tides, as well as strong seasonal oscillations. This study investigates MTM temperature variability over the past 3.5 years comprising over 800 nights of high-quality data and compares the results with ground-based spectrometric measurements from nearby El Leoncito Observatory, Argentina, Maui-MALT, Hawaii MTM measurements (2001-2005) and coincident mesospheric temperature measurement by SABER on the NASA TIMED satellite.