Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

A New Non-Inheriting Homogeneous Solution Of The Einstein-Maxwell Equations With Cosmological Term, Charles G. Torre Jan 2022

A New Non-Inheriting Homogeneous Solution Of The Einstein-Maxwell Equations With Cosmological Term, Charles G. Torre

Research Vignettes

No abstract provided.


The Differentialgeometry Package, Ian M. Anderson, Charles G. Torre Jan 2022

The Differentialgeometry Package, Ian M. Anderson, Charles G. Torre

Downloads

This is the entire DifferentialGeometry package, a zip file (DifferentialGeometry.zip) containing (1) a Maple Library file, DifferentialGeometryUSU.mla, (2) a Maple help file DifferentialGeometry.help, (3) a Maple Library file, DGApplicatons.mla. This is the latest version of the DifferentialGeometry software; it supersedes what is released with Maple.

Installation instructions


Spacetime Groups, Ian M. Anderson, Charles G. Torre Jan 2019

Spacetime Groups, Ian M. Anderson, Charles G. Torre

Publications

A spacetime group is a connected 4-dimensional Lie group G endowed with a left invariant Lorentz metric h and such that the connected component of the isometry group of h is G itself. The Newman-Penrose formalism is used to give an algebraic classification of spacetime groups, that is, we determine a complete list of inequivalent spacetime Lie algebras, which are pairs (g,η), with g being a 4-dimensional Lie algebra and η being a Lorentzian inner product on g. A full analysis of the equivalence problem for spacetime Lie algebras is given which leads to a completely algorithmic solution to the …


Introduction To The Usu Library Of Solutions To The Einstein Field Equations, Ian M. Anderson, Charles G. Torre Dec 2017

Introduction To The Usu Library Of Solutions To The Einstein Field Equations, Ian M. Anderson, Charles G. Torre

Tutorials on... in 1 hour or less

This is a Maple worksheet providing an introduction to the USU Library of Solutions to the Einstein Field Equations. The library is part of the DifferentialGeometry software project and is a collection of symbolic data and metadata describing solutions to the Einstein equations.


Rainich-Type Conditions For Perfect Fluid Spacetimes, Dionisios Krongos, Charles G. Torre Dec 2014

Rainich-Type Conditions For Perfect Fluid Spacetimes, Dionisios Krongos, Charles G. Torre

Research Vignettes

In this worksheet we describe and illustrate a relatively simple set of new Rainich-type conditions on an n-dimensional spacetime which are necessary and sufficient for it to define a perfect fluid solution of the Einstein field equations. Procedures are provided which implement these Rainich-type conditions and which reconstruct the perfect fluid from the metric. These results provide an example of the idea of geometrization of matter fields in general relativity, which is a purely geometrical characterization of matter fields via the Einstein field equations.


Rainich-Type Conditions For Null Electrovacuum Spacetimes Ii, Charles G. Torre Oct 2013

Rainich-Type Conditions For Null Electrovacuum Spacetimes Ii, Charles G. Torre

Research Vignettes

In this second of two worksheets I continue describing local Rainich-type conditions which are necessary and sufficient for the metric to define a null electrovacuum. In other words, these conditions, which I will call the null electrovacuum conditions, guarantee the existence of a null electromagnetic field such that the metric and electromagnetic field satisfy the Einstein-Maxwell equations. When it exists, the electromagnetic field is easily constructed from the metric. In this worksheet I consider the null electrovacuum conditions which apply when a certain null geodesic congruence determined by the metric is twisting. I shall illustrate the these conditions using a …


How To Find Killing Vectors, Charles G. Torre Mar 2013

How To Find Killing Vectors, Charles G. Torre

How to... in 10 minutes or less

We show how to compute the Lie algebra of Killing vector fields of a metric in Maple using the commands KillingVectors and LieAlgebraData. A Maple worksheet and a PDF version can be found below.


A Homogeneous Solution Of The Einstein-Maxwell Equations, Charles G. Torre Jul 2012

A Homogeneous Solution Of The Einstein-Maxwell Equations, Charles G. Torre

Research Vignettes

We exhibit and analyze a homogeneous spacetime whose source is a pure radiation electromagnetic field [1]. It was previously believed that this spacetime is the sole example of a homogeneous pure radiation solution of the Einstein equations which admits no electromagnetic field (see [2] and references therein). Here we correct this error in the literature by explicitly displaying the electromagnetic source. This result implies that all homogeneous pure radiation spacetimes satisfy the Einstein-Maxwell equations.

PDF and Maple worksheets can be downloaded from the links below.


How To Create A Lie Algebra, Ian M. Anderson Jul 2012

How To Create A Lie Algebra, Ian M. Anderson

How to... in 10 minutes or less

We show how to create a Lie algebra in Maple using three of the most common approaches: matrices, vector fields and structure equations. PDF and Maple worksheets can be downloaded from the links below.