Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

Cosmology, Relativity, and Gravity

Gravitational wave

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physics

Constraining The Black Hole Mass Spectrum With Gravitational Wave Observations – I. The Error Kernel, Danny C. Jacobs, Joseph E. Plowman, Ronald W. Hellings, Sachiko Tsuruta, Shane L. Larson Feb 2010

Constraining The Black Hole Mass Spectrum With Gravitational Wave Observations – I. The Error Kernel, Danny C. Jacobs, Joseph E. Plowman, Ronald W. Hellings, Sachiko Tsuruta, Shane L. Larson

All Physics Faculty Publications

Many scenarios have been proposed for the origin of the supermassive black holes (SMBHs) that are found in the centres of most galaxies. Many of these formation scenarios predict a high-redshift population of intermediate-mass black holes (IMBHs), with masses M in the range 102M≲ 105 M. A powerful way to observe these IMBHs is via gravitational waves the black holes emit as they merge. The statistics of the observed black hole population should, in principle, allow us to discriminate between competing astrophysical scenarios for the origin and formation of SMBHs. However, …


Lisa Data Analysis: Source Identification And Subtraction, Neil J. Cornish, Shane L. Larson Jan 2003

Lisa Data Analysis: Source Identification And Subtraction, Neil J. Cornish, Shane L. Larson

All Physics Faculty Publications

The Laser Interferometer Space Antenna will operate as an AM-FM receiver for gravitational waves. For binary systems, the source location, orientation and orbital phase are encoded in the amplitude and frequency modulation. The same modulations spread a monochromatic signal over a range of frequencies, making it difficult to identify individual sources. We present a method for detecting and subtracting individual binary signals from a data stream with many overlapping signals.


Unequal Arm Space-Borne Gravitational Wave Detectors, Shane L. Larson, Ronald W. Hellings, William A. Hiscock Jan 2002

Unequal Arm Space-Borne Gravitational Wave Detectors, Shane L. Larson, Ronald W. Hellings, William A. Hiscock

All Physics Faculty Publications

Unlike ground-based interferometric gravitational wave detectors, large space-based systems will not be rigid structures. When the end stations of the laser interferometer are freely flying spacecraft, the armlengths will change due to variations in the spacecraft positions along their orbital trajectories, so the precise equality of the arms that is required in a laboratory interferometer to cancel laser phase noise is not possible. However, using a method discovered by Tinto and Armstrong, a signal can be constructed in which laser phase noise exactly cancels out, even in an unequal arm interferometer. We examine the case where the ratio of the …