Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

Atmospheric Sciences

Gravity waves

Articles 1 - 5 of 5

Full-Text Articles in Physics

Satellite Measurements Of Mesospheric Gravity Wave Temperature Variances Over The Andes, Jonathan Pugmire Jun 2015

Satellite Measurements Of Mesospheric Gravity Wave Temperature Variances Over The Andes, Jonathan Pugmire

Graduate Student Posters

Utah State University’s Mesospheric Temperature Mapper (MTM) has operated continuously at the Andes Lidar Observatory on Cerro Pachon, Chile (30.3° S, 70.7° S) since August 2009. Its purpose is to quantify gravity wave (GW) activity as observed in OH rotational temperature measurements in the mesosphere at an altitude of ~87 km with a particular interest in investigating short period GWs and their seasonal variability. 5.5 years data to date.

The SABER instrument aboard the TIMED satellite provides complimentary data to measure temperature variances and GW potential energy (PE) to quantify the small-scale GWs propagating up into the mesosphere, and lower …


Upgraded Alo Rayleigh Lidar System And Its Improved Gravity Wave Measurements, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham Jun 2012

Upgraded Alo Rayleigh Lidar System And Its Improved Gravity Wave Measurements, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham

Graduate Student Posters

The Rayleigh-Scatter lidar system at the Atmospheric Lidar Observatory (ALO) on the Utah State campus is currently going through a series of upgrades to significantly improve its observational abilities. A specific objective of these upgrades is to expand the altitude range over which backscattered photons can be collected. A second objective is to increase the sensitivity of the instrument to be able to analyze the raw data at finer temporal and/or spatial resolutions. By measuring relative densities, the system will be able to produce absolute temperatures and relative density perturbations, which illustrate gravity wave structures. Gravity wave studies will significantly …


Observations With The Most Sensitive Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham Apr 2012

Observations With The Most Sensitive Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham

Graduate Student Posters

The mesosphere is the most unexplored region of the atmosphere. Its altitude range of 50-85 km lies in between the reaches of data collecting instruments like weather balloons and satellites. For this reason, remote sensing systems, such as lidar, which are able to employ ground-based instruments to make extensive measurements in this difficult to detect region. The Rayleigh-scatter lidar at USU is currently being redeveloped to be the most powerful and sensitive of its kind. This type of lidar exploits light and particle interactions, like those that account for the blue color of the sky, to make relative density and …


Rayleigh-Lidar Observations Of Mesospheric Instabilities, Gabriel C. Taylor, Durga N. Kafle, Vincent B. Wickwar Apr 2009

Rayleigh-Lidar Observations Of Mesospheric Instabilities, Gabriel C. Taylor, Durga N. Kafle, Vincent B. Wickwar

Posters

From 1993 to 2004 the Utah State University Rayleigh lidar, known as the USU green laser, collected 900 nights of data from the mesosphere (45-90 km). From these observations profiles of relative neutral densities and absolute temperatures were derived. Usually, the atmosphere is horizontally stratified with a balance between gravitational and pressure forces. When this balance is perturbed, it leads to the generation of buoyancy or “gravity” waves. An example of these is clear air turbulence, which can have dramatic effects on airplanes. As these waves propagate upward, the decrease in atmospheric density and conservation of energy combine to give …


Mesospheric Temperature Observationsat The Usu / Cass Atmospheric Lidar Observatory (Alo), Vincent B. Wickwar, T D. Wilkerson, M Hammond, Joshua P. Herron Jan 2001

Mesospheric Temperature Observationsat The Usu / Cass Atmospheric Lidar Observatory (Alo), Vincent B. Wickwar, T D. Wilkerson, M Hammond, Joshua P. Herron

All Physics Faculty Publications

The Center for Atmospheric and Space Sciences (CASS) at Utah State University (USU) operates the ALO for studying the middle atmosphere from the stratosphere to the lower thermosphere. ALO’s mid-latitude location (41.74°N, 111.81°W, 1466 m) is very unique in that it is in the middle of an extensive set of rugged mountains, the Rocky Mountains, which are a major orographic source of gravity waves that may give rise to a longitudinal variation in the mesospheric structure. Mesospheric observations between approximately 45 and 90 km have been carried out on many clear nights with the ALO Rayleigh- scatter lidar since late …