Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Effects Of B And C Doping On Tunneling Magnetoresistance In Cofe/Mgo Magnetic Tunnel Junctions, Andy Paul Chen, John D. Burton, Evgeny Y. Tsymbal, Yuan Ping Feng, Jingsheng Chen Jul 2018

Effects Of B And C Doping On Tunneling Magnetoresistance In Cofe/Mgo Magnetic Tunnel Junctions, Andy Paul Chen, John D. Burton, Evgeny Y. Tsymbal, Yuan Ping Feng, Jingsheng Chen

Evgeny Tsymbal Publications

Using density-functional theory calculations, we investigate the dominant defects formed by boron (B) and carbon (C) impurities in a CoFe/MgO/CoFe magnetic tunnel junction (MTJ) and their influence on conductivity and tunneling magnetoresistance (TMR). We find that, in the O-poor conditions relevant to experiment, B forms the substitutional defect BCo and C forms the interstitial site Ci at the CoFe/MgO interface. The C-doped MTJ is predicted to have a significantly higher TMR than the B-doped MTJ. This is due to interface state densities associated with the majority spin Δ1-symmetry bands being more heavily suppressed ...


A Brief Review Of Ferroelectric Control Of Magnetoresistance In Organic Spin Valves, Xiaoshan Xu Jan 2018

A Brief Review Of Ferroelectric Control Of Magnetoresistance In Organic Spin Valves, Xiaoshan Xu

Xiaoshan Xu Papers

Magnetoelectric coupling has been a trending research topic in both organic and inorganic materials and hybrids. The concept of controlling magnetism using an electric field is particularly appealing in energy efficient applications. In this spirit, ferroelectricity has been introduced to organic spin valves to manipulate the magneto transport, where the spin transport through the ferromagnet/organic spacer interfaces (spinterface) are under intensive study. The ferroelectric materials in the organic spin valves provide a knob to vary the interfacial energy alignment and the interfacial crystal structures, both are critical for the spin transport. In this review, we introduce the recent efforts ...


Tunneling Anisotropic Magnetoresistance In A Magnetic Tunnel Junction With Half-Metallic Electrodes, John D. Burton, Evgeny Y. Tsymbal Jan 2016

Tunneling Anisotropic Magnetoresistance In A Magnetic Tunnel Junction With Half-Metallic Electrodes, John D. Burton, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Tunneling anisotropic magnetoresistance (TAMR) is the difference in resistance of a magnetic tunnel junction due to a change in magnetization direction of one or both magnetic electrodes with respect to the flow of current. We present the results of first-principles density functional calculations of the TAMR effect in magnetic tunnel junctions with La0.7Sr0.3MnO3 (LSMO) electrodes and a SrTiO3 (STO) tunneling barrier. We find an ∼500% difference in resistance between magnetization in the plane and out of the plane. This large TAMR effect originates from the half-metallic nature of LSMO: When magnetization is ...


Electric Control Of Spin Injection Into A Ferroelectric Semiconductor, Xiaohui Liu, John D. Burton, M. Ye. Zhuravlev, Evgeny Y. Tsymbal Jan 2015

Electric Control Of Spin Injection Into A Ferroelectric Semiconductor, Xiaohui Liu, John D. Burton, M. Ye. Zhuravlev, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Electric-field control of spin-dependent properties has become one of the most attractive phenomena in modern materials research due to the promise of new device functionalities. One of the paradigms in this approach is to electrically toggle the spin polarization of carriers injected into a semiconductor using ferroelectric polarization as a control parameter. Using first-principles density-functional calculations, we explore the effect of ferroelectric polarization of electron-doped BaTiO3 (n-BaTiO3) on the spin-polarized transmission across the SrRuO3/n-BaTiO3(001) interface. Our study reveals that, in this system, the interface transmission is negatively spin polarized and that ferroelectric ...


Effect Of Tip Resonances On Tunnelling Anisotropic Magnetoresistance In Ferromagnetic Break Junctions: A First-Principles Study, John D. Burton, Renat F. Sabirianov, Julian P. Velev, O. N. Mryasov, Evgeny Y. Tsymbal Oct 2007

Effect Of Tip Resonances On Tunnelling Anisotropic Magnetoresistance In Ferromagnetic Break Junctions: A First-Principles Study, John D. Burton, Renat F. Sabirianov, Julian P. Velev, O. N. Mryasov, Evgeny Y. Tsymbal

Faculty Publications: Materials Research Science and Engineering Center

First-principles calculations of electron tunneling transport in nanoscale Ni and Co break-junctions reveal strong dependence of the conductance on the magnetization direction, an effect known as tunneling anisotropic magnetoresistance TAMR. An important aspect of this phenomenon stems from resonant states localized in the electrodes near the junction break. The energy and broadening of these states is strongly affected by the magnetization orientation due to spin-orbit coupling, causing TAMR to be sensitive to bias voltage on a scale of a few millivolts. Our results bear a resemblance to recent experimental data and suggest that TAMR driven by resonant states is a ...


Interface Effects In Spin-Dependent Tunneling, Evgeny Y. Tsymbal, Kirill D. Belashchenko, Julian P. Velev, Sitaram Jaswal, Mark Van Schilfgaarde, Ivan I. Oleynik, Derek A. Stewart Feb 2007

Interface Effects In Spin-Dependent Tunneling, Evgeny Y. Tsymbal, Kirill D. Belashchenko, Julian P. Velev, Sitaram Jaswal, Mark Van Schilfgaarde, Ivan I. Oleynik, Derek A. Stewart

Evgeny Tsymbal Publications

In the past few years the phenomenon of spin dependent tunneling (SDT) in magnetic tunnel junctions (MTJs) has aroused enormous interest and has developed into a vigorous field of research. The large tunneling magnetoresistance (TMR) observed in MTJs garnered much attention due to possible application in random access memories and magnetic field sensors. This led to a number of fundamental questions regarding the phenomenon of SDT. One such question is the role of interfaces in MTJs and their effect on the spin polarization of the tunneling current and TMR. In this paper we consider different models which suggest that the ...