Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Ferroelectric Polarization Control Of Magnetic Anisotropy In Pbzr0.2ti0.8o3/La0.8sr0.2mno3 Heterostructures, Anil Rajapitamahuni, L. L. Tao, Y. Hao, Jingfeng Song, Xiaoshan Xu, Evgeny Y. Tsymbal, Xia Hong Feb 2019

Ferroelectric Polarization Control Of Magnetic Anisotropy In Pbzr0.2ti0.8o3/La0.8sr0.2mno3 Heterostructures, Anil Rajapitamahuni, L. L. Tao, Y. Hao, Jingfeng Song, Xiaoshan Xu, Evgeny Y. Tsymbal, Xia Hong

Evgeny Tsymbal Publications

The interfacial coupling between the switchable polarization and neighboring magnetic order makes ferroelectric/ferromagnetic composite structures a versatile platform to realize voltage control of magnetic anisotropy. We report the nonvolatile ferroelectric field effect modulation of the magnetocrystalline anisotropy (MCA) in epitaxial PbZr0.2Ti0.8O3 (PZT)/La0.8Sr0.2MnO3 (LSMO) heterostructures grown on (001) SrTiO3 substrates. Planar Hall effect measurements show that the in-plane magnetic anisotropy energy in LSMO is enhanced by about 22% in the hole accumulation state compared to the depletion state, in quantitative agreement with our first-principles ...


On The Structural Origin Of The Single-Ion Magnetic Anisotropy In Lufeo3, Shi Cao, Xiaozhe Zhang, Tula R. Paudel, Kishan Sinha, Xiao Wang, Xuanyuan Jiang, Wenbin Wang, Stuart Brutsche, Jian Wang, Philip J. Ryan, Jong-Woo Kim, Xuemei Cheng, Evgeny Y. Tsymbal, Peter A. Dowben, Xiaoshan Xu Apr 2016

On The Structural Origin Of The Single-Ion Magnetic Anisotropy In Lufeo3, Shi Cao, Xiaozhe Zhang, Tula R. Paudel, Kishan Sinha, Xiao Wang, Xuanyuan Jiang, Wenbin Wang, Stuart Brutsche, Jian Wang, Philip J. Ryan, Jong-Woo Kim, Xuemei Cheng, Evgeny Y. Tsymbal, Peter A. Dowben, Xiaoshan Xu

Evgeny Tsymbal Publications

Electronic structures for the conduction bands of both hexagonal and orthorhombic LuFeO3 thin films have been measured using x-ray absorption spectroscopy at oxygen K (O K) edge. Dramatic differences in both the spectra shape and the linear dichroism are observed. These differences in the spectra can be explained using the differences in crystal field splitting of the metal (Fe and Lu) electronic states and the differences in O 2p-Fe 3d and O 2p-Lu 5d hybridizations. While the oxidation states has not changed, the spectra are sensitive to the changes in the local environments of the Fe3+ and Lu ...


Magnetic Anisotropy And Exchange In (001) Textured Fept-Based Nanostructures, Tom George Dec 2013

Magnetic Anisotropy And Exchange In (001) Textured Fept-Based Nanostructures, Tom George

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Hard-magnetic L10 phase FePt has been demonstrated as a promising candidate for future nanomagnetic applications, especially magnetic recording at areal densities approaching 10 Tb/in2. Realization of FePt’s potential in recording media requires control of grain size and intergranular exchange interactions in films with high degrees of L10 order and (001) crystalline texture, including high perpendicular magnetic anisotropy. Furthermore, a write-assist mechanism must be employed to overcome the high coercivity of L10 FePt nanograins. The research described in this dissertation examines potential solutions to the aforementioned problems. Specifically, a nonepitaxial method of fabricating highly (001 ...


Magnetism Of Films, Yi Liu, David J. Sellmyer Jan 2013

Magnetism Of Films, Yi Liu, David J. Sellmyer

David Sellmyer Publications

Films of L10-structure Fe50–xCoxPt50 films are synthesized by co-sputtering Fe, Co, and Pt on (001) MgO substrates and Si substrates with in-situ heating at 830°C. The nanostructures and magnetic properties of the films are characterized by X-ray diffraction, transmission electron microscopy, and SQUID. The compositions of the samples Fe50–xCoxPt50 are designed to maintain an atomic (Fe+Co):Pt ratio of 50:50 while increasing the Co content in each successive sample. In all samples, the X-ray diffraction patterns from samples on MgO substrate exhibit three strong peaks, namely L10Fe50–xCoxPt50 (001), (002), and MgO (002 ...


Magnetoelectric Interactions Between An Organic Ferroelectric And A Transition Metal Ferromagnet, Abhijit Mardana Jan 2012

Magnetoelectric Interactions Between An Organic Ferroelectric And A Transition Metal Ferromagnet, Abhijit Mardana

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

The interaction between ferromagnetic and ferroelectric films, the magnetoelectric effect, is a fascinating fundamental research area as well as having potential applications in magnetic data storage devices. We have investigated magnetoelectric coupling effects in thin film heterostructures, consists of metallic ferromagnet, cobalt, and the polymer ferroelectric [P(VDF-TrFE) 70:30]. The work described here encompasses changes in ferroelectric polarization with magnetic field as well as changes in the magnetic anisotropy with ferroelectric polarization.

In samples of Co overlayers on P(VDF-TrFE), in which the Co is not constrained by the substrate, the polarization shows a large change on application of ...


Ferroelectric Control Of Magnetic Anisotropy, Abhijit Mardana, Stephen Ducharme, Shireen Adenwalla Aug 2011

Ferroelectric Control Of Magnetic Anisotropy, Abhijit Mardana, Stephen Ducharme, Shireen Adenwalla

Stephen Ducharme Publications

We demonstrate unambiguous evidence of the electric field control of magnetic anisotropy in a wedge-shaped Co film of varying thickness. A copolymer ferroelectric of 70% vinylidene fluoride with 30% trifluoroethylene, P(VDF-TrFE) overlays the Co wedge, providing a large switchable electric field. As the ferroelectric polarization is switched from up to down, the magnetic anisotropy of the Co films changes by as much as 50%. At the lowest Co thickness the magnetic anisotropy switches from out-of-plane to inplane as the ferroelectric polarization changes from up to down, enabling us to rotate the magnetization through a large angle at constant magnetic ...