Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nebraska - Lincoln

Films

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Physics

Ambipolar Ferromagnetism By Electrostatic Doping Of A Manganite, L. M. Zheng, X. Renshaw Wang, W. M. Lü, C. J. Li, Tula R. Paudel, Z. Q. Liu, Z. Huang, S. W. Zeng, Kun Han, Z. H. Chen, X. P. Qiu, M. S. Li, Shize Yang, B. Yang, Matthew F. Chisholm, L. W. Martin, S. J. Pennycook, Evgeny Y. Tsymbal, J. M. D. Coey, W. W. Cao May 2018

Ambipolar Ferromagnetism By Electrostatic Doping Of A Manganite, L. M. Zheng, X. Renshaw Wang, W. M. Lü, C. J. Li, Tula R. Paudel, Z. Q. Liu, Z. Huang, S. W. Zeng, Kun Han, Z. H. Chen, X. P. Qiu, M. S. Li, Shize Yang, B. Yang, Matthew F. Chisholm, L. W. Martin, S. J. Pennycook, Evgeny Y. Tsymbal, J. M. D. Coey, W. W. Cao

Evgeny Tsymbal Publications

Complex-oxide materials exhibit physical properties that involve the interplay of charge and spin degrees of freedom. However, an ambipolar oxide that is able to exhibit both electron-doped and hole-doped ferromagnetism in the same material has proved elusive. Here we report ambipolar ferromagnetism in LaMnO3, with electron–hole asymmetry of the ferromagnetic order. Starting from an undoped atomically thin LaMnO3 film, we electrostatically dope the material with electrons or holes according to the polarity of a voltage applied across an ionic liquid gate. Magnetotransport characterization reveals that an increase of either electron-doping or hole-doping induced ferromagnetic order in this ...


Resonant Tunneling Across A Ferroelectric Domain Wall, M. Li, L. L. Tao, J. P. Velev, Evgeny Y. Tsymbal Apr 2018

Resonant Tunneling Across A Ferroelectric Domain Wall, M. Li, L. L. Tao, J. P. Velev, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Motivated by recent experimental observations, we explore electron transport properties of a ferroelectric tunnel junction (FTJ) with an embedded head-to-head ferroelectric domain wall, using first-principles density-functional theory calculations. We consider a FTJ with La0.5Sr0.5MnO3 electrodes separated by a BaTiO3 barrier layer and show that an in-plane charged domain wall in the ferroelectric BaTiO3 can be induced by polar interfaces. The resulting V-shaped electrostatic potential profile across the BaTiO3 layer creates a quantum well and leads to the formation of a two-dimensional electron gas, which stabilizes the domain wall. The confined ...


Giant Enhancement Of Magnetic Anisotropy In Ultrathin Manganite Films Via Nanoscale 1d Periodic Depth Modulation, Anil Rajapitamahuni, L. Zhang, Mark A. Koten, V. R. Singh, John D. Burton, Evgeny Y. Tsymbal, Jeffrey E. Shield, Xia Hong May 2016

Giant Enhancement Of Magnetic Anisotropy In Ultrathin Manganite Films Via Nanoscale 1d Periodic Depth Modulation, Anil Rajapitamahuni, L. Zhang, Mark A. Koten, V. R. Singh, John D. Burton, Evgeny Y. Tsymbal, Jeffrey E. Shield, Xia Hong

Evgeny Tsymbal Publications

The relatively low magnetocrystalline anisotropy (MCA) in strongly correlated manganites (La,Sr)MnO3 has been a major hurdle for implementing them in spintronic applications. Here we report an unusual, giant enhancement of in-plane MCA in 6 nm La0.67Sr0.33MnO3 (LSMO) films grown on (001) SrTiO3 substrates when the top 2 nm is patterned into periodic stripes of 100 or 200 nm width. Planar Hall effect measurements reveal an emergent uniaxial anisotropy superimposed on one of the original biaxial easy axes for unpatterned LSMO along (110) directions, with a 50-fold enhanced anisotropy energy ...


Chemically Induced Jahn–Teller Ordering On Manganite Surfaces, Zheng Gai, Wenzhi Lin, John D. Burton, K. Fuchigami, Paul C. Snijders, T. Z. Ward, Evgeny Y. Tsymbal, J. Shen, Stephen Jesse, Sergei V. Kalinin, Arthur P. Baddorf Jul 2014

Chemically Induced Jahn–Teller Ordering On Manganite Surfaces, Zheng Gai, Wenzhi Lin, John D. Burton, K. Fuchigami, Paul C. Snijders, T. Z. Ward, Evgeny Y. Tsymbal, J. Shen, Stephen Jesse, Sergei V. Kalinin, Arthur P. Baddorf

Evgeny Tsymbal Publications

Physical and electrochemical phenomena at the surfaces of transition metal oxides and their coupling to local functionality remains one of the enigmas of condensed matter physics. Understanding the emergent physical phenomena at surfaces requires the capability to probe the local composition, map order parameter fields and establish their coupling to electronic properties. Here we demonstrate that measuring the sub-30-pm displacements of atoms from high-symmetry positions in the atomically resolved scanning tunnelling microscopy allows the physical order parameter fields to be visualized in real space on the single-atom level. Here, this local crystallographic analysis is applied to the in-situ-grown manganite surfaces ...


Polarization-Controlled Ohmic To Schottky Transition At A Metal/Ferroelectric Interface, Xiaohui Liu, Yong Wang, John D. Burton, Evgeny Y. Tsymbal Oct 2013

Polarization-Controlled Ohmic To Schottky Transition At A Metal/Ferroelectric Interface, Xiaohui Liu, Yong Wang, John D. Burton, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Ferroelectric polar displacements have recently been observed in conducting electron-doped BaTiO3 (n-BTO). The coexistence of a ferroelectric phase and conductivity opens the door to new functionalities that may provide a unique route for novel device applications. Using first-principles methods and electrostatic modeling, we explore the effect that the switchable polarization of n-BTO has on the electronic properties of the SrRuO3/n-BTO (001) interface. Ferroelectric polarization controls the accumulation or depletion of electron charge at the interface, and the associated bending of the n-BTO conduction band determines the transport regime across the interface. The interface exhibits ...