Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

Makerspace Club, Carolyn Brady Oct 2018

Makerspace Club, Carolyn Brady

Honors Expanded Learning Clubs

This is a unique club that allows children to explore the world around them and make projects using materials provided by educators, and to get children thinking about how things work in the world, and how they do. They gain knowledge about success and failure of these things by recreating them.


Spatial And Temporal Correlations Of Xy Macro Spins, Robert Streubel, Noah Kent, Scott Dhuey, Andreas Scholl, Steve Kevan, Peter Fischer Sep 2018

Spatial And Temporal Correlations Of Xy Macro Spins, Robert Streubel, Noah Kent, Scott Dhuey, Andreas Scholl, Steve Kevan, Peter Fischer

Robert Streubel Papers

We use nano disk arrays with square and honeycomb symmetry to investigate magnetic phases and spin correlations of XY dipolar systems at the micro scale. Utilizing magnetization sensitive X-ray photoemission electron microscopy, we probe magnetic ground states and the “order-by-disorder” phenomenon predicted 30 years ago. We observe the antiferromagnetic striped ground state in square lattices, and 6-fold symmetric structures, including trigonal vortex lattices and disordered floating vortices, in the honeycomb lattice. The spin frustration in the honeycomb lattice causes a phase transition from a long-range ordered locked phase over a floating phase with quasi long-range order and indications of a …


Large T1 Contrast Enhancement Using Superparamagnetic Nanoparticles In Ultra-Low Field Mri, Xiaolu Yin, Stephen E. Russek, Gary Zabow, Fan Sun, Jeotikatan Mohapatra, Kathryn E. Keenan, Michael A. Boss, Hao Zeng, J. Ping Liu, Alexandrea Viert, Sy-Hwang Liou, John Moreland Aug 2018

Large T1 Contrast Enhancement Using Superparamagnetic Nanoparticles In Ultra-Low Field Mri, Xiaolu Yin, Stephen E. Russek, Gary Zabow, Fan Sun, Jeotikatan Mohapatra, Kathryn E. Keenan, Michael A. Boss, Hao Zeng, J. Ping Liu, Alexandrea Viert, Sy-Hwang Liou, John Moreland

Nebraska Center for Materials and Nanoscience: Faculty Publications

Superparamagnetic iron oxide nanoparticles (SPIONs) are widely investigated and utilized as magnetic resonance imaging (MRI) contrast and therapy agents due to their large magnetic moments. Local field inhomogeneities caused by these high magnetic moments are used to generate T2 contrast in clinical high-field MRI, resulting in signal loss (darker contrast). Here we present strong T1 contrast enhancement (brighter contrast) from SPIONs (diameters from 11 nm to 22 nm) as observed in the ultra-low field (ULF) MRI at 0.13 mT. We have achieved a high longitudinal relaxivity for 18 nm SPION solutions, r1 = 615 s−1 mM−1, which is two …


Hartmann Characterization Of The Peem-3 Aberration-Corrected X-Ray Photoemission Electron Microscope, A. Scholl, M. A. Marcus, A. Doran, J. R. Nasiatka, A. T. Young, A. A. Macdowell, R. Streubel, N. Kent, J. Feng, W. Wan, H. A. Padmore May 2018

Hartmann Characterization Of The Peem-3 Aberration-Corrected X-Ray Photoemission Electron Microscope, A. Scholl, M. A. Marcus, A. Doran, J. R. Nasiatka, A. T. Young, A. A. Macdowell, R. Streubel, N. Kent, J. Feng, W. Wan, H. A. Padmore

Robert Streubel Papers

Aberration correction by an electron mirror dramatically improves the spatial resolution and transmission of photoemission electron microscopes. We will review the performance of the recently installed aberration corrector of the X-ray Photoemission Electron Microscope PEEM-3 and show a large improvement in the efficiency of the electron optics. Hartmann testing is introduced as a quantitative method to measure the geometrical aberrations of a cathode lens electron microscope. We find that aberration correction leads to an order of magnitude reduction of the spherical aberrations, suggesting that a spatial resolution of below 100 nm is possible at 100% transmission of the optics when …


Structure And Magnetism Of Mn5ge3 Nanoparticles, Onur Tosun, Mohammed Salehi-Fashami, Balamurugan Balasubramanian, Ralph Skomski, David J. Sellmyer, George C. Hadjipanayis Jan 2018

Structure And Magnetism Of Mn5ge3 Nanoparticles, Onur Tosun, Mohammed Salehi-Fashami, Balamurugan Balasubramanian, Ralph Skomski, David J. Sellmyer, George C. Hadjipanayis

Nebraska Center for Materials and Nanoscience: Faculty Publications

In this work, we investigated the magnetic and structural properties of isolated Mn5Ge3 nanoparticles prepared by the cluster-beam deposition technique. Particles with sizes between 7.2 and 12.6 nm were produced by varying the argon pressure and power in the cluster gun. X-ray diffraction (XRD)and selected area diffraction (SAD) measurements show that the nanoparticles crystallize in the hexagonal Mn5Si3-type crystal structure, which is also the structure of bulk Mn5Ge3. The temperature dependence of the magnetization shows that the as-made particles are ferromagnetic at room temperature and have slightly different Curie …


Magnetism Of New Metastable Cobalt-Nitride Compounds, Balamuruga Balamurugan, Xin Zhao, Shah R. Valloppilly, Sumit Beniwal, Ralph Skomski, Anandakumar Sarella, Yunlong Jin, Xingzhong Li, Xiaoshan Xu, Huibo Cao, Haohan Wang, Axel Enders, Cai-Zhuang Wang, Kai-Ming Ho, David J. Sellmyer Jan 2018

Magnetism Of New Metastable Cobalt-Nitride Compounds, Balamuruga Balamurugan, Xin Zhao, Shah R. Valloppilly, Sumit Beniwal, Ralph Skomski, Anandakumar Sarella, Yunlong Jin, Xingzhong Li, Xiaoshan Xu, Huibo Cao, Haohan Wang, Axel Enders, Cai-Zhuang Wang, Kai-Ming Ho, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

The search for new magnetic materials with high magnetization and magnetocrystalline anisotropy is important for a wide range of applications including information and energy processing. There is only a limited number of naturally occurring magnetic compounds that are suitable. This situation stimulates an exploration of new phases that occur far from thermal-equilibrium conditions, but their stabilization is generally inhibited due to high positive formation energies. Here a nanocluster-deposition method has enabled the discovery of a set of new non-equilibrium Co-N intermetallic compounds. The experimental search was assisted by computational methods including adaptive-genetic-algorithm and electronic- structure calculations. Conventional wisdom is that …


Structural, Magnetic, And Electron-Transport Properties Of Epitaxial Mn2Ptsn Films, Y. Jin, Shah R. Valloppilly, Parashu Kharel, Jace Waybright, Pavel V. Lukashev, Xingzhong Li, David J. Sellmyer Jan 2018

Structural, Magnetic, And Electron-Transport Properties Of Epitaxial Mn2Ptsn Films, Y. Jin, Shah R. Valloppilly, Parashu Kharel, Jace Waybright, Pavel V. Lukashev, Xingzhong Li, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

The growth of new magnetic materials on suitable insulating substrates is an important part of the development of spin-electronics devices for memory or information processing. Epitaxial thin films of Mn2PtSn were grown on a MgO [001] substrate by magnetron co-sputtering of the constituents. Structural, magnetic, and electron-transport properties were investigated. The epitaxial Mn2PtSn film has an inverse tetragonal structure with the c-axis aligned in the plane of the MgO substrate. The lattice constants determined using XRD and TEM analysis are c=6.124Å and a=b=4.505Å. The orientation of Mn2PtSn c-axis which …


Towards A Strong Spin–Orbit Coupling Magnetoelectric Transistor, Peter Dowben, Christian Binek, Kai Zhang, Lu Wang, Wai-Ning Mei, Jonathan P. Bird, Uttam Singisetti, Xia Hong, Kang L. Wang, Dmitri Nikonov Jan 2018

Towards A Strong Spin–Orbit Coupling Magnetoelectric Transistor, Peter Dowben, Christian Binek, Kai Zhang, Lu Wang, Wai-Ning Mei, Jonathan P. Bird, Uttam Singisetti, Xia Hong, Kang L. Wang, Dmitri Nikonov

Peter Dowben Publications

Here, we outline magnetoelectric (ME) device concepts based on the voltage control of the interface magnetism of an ME antiferromagnet gate dielectric formed on a very thin semiconductor channel with large spin–orbit coupling (SOC). The emphasis of the ME spin field-effect transistors (ME spin FET) is on an antiferromagnet spin–orbit read logic device and a ME spin-FET multiplexer. Both spin-FET schemes exploit the strong SOC in the semiconducting channel materials but remain dependent on the voltage-induced switching of an ME, so that the switching time is limited only by the switching dynamics of the ME. The induced exchange field spin …


Spin-Polarized Electron Transmission Through Chiral Halocamphor Molecules, J. M. Dreiling, F. W. Lewis, Timothy J. Gay Jan 2018

Spin-Polarized Electron Transmission Through Chiral Halocamphor Molecules, J. M. Dreiling, F. W. Lewis, Timothy J. Gay

Timothy J. Gay Publications

We have measured electron-circularly-dichroic asymmetries when longitudinally-polarized (chiral) electrons are scattered quasi-elastically by chiral halocamphor molecules: 3-bromocamphor (C10H15BrO), 3-iodocamphor (C10H15IO), and 10-iodocamphor. The proposed dynamic origins of these asymmetries are considered in terms of three classical models related to Mott scattering, target electron helicity density, and spin-other-orbit interactions. The asymmetries observed for 3-bromocamphor and 3-iodocamphor scale roughly as Z2, where Z is the nuclear charge of the heaviest atom in the target molecule, but the scaling is violated by 10- iodocamphor, which has a smaller asymmetry than that for 3-iodocamphor. …