Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Study Of The Growth And Switching Kinetics On Ferroelectric Nanocrystals Of Copolymer Vinylidene Fluoride And Trifluoroethylene On An Atomic Force Microscope, R. V. Gaynutdinov, O. A. Lysova, A. L. Tolstikhina, V. M. Fridkin, S. G. Yudin, Stephen Ducharme Mar 2013

Study Of The Growth And Switching Kinetics On Ferroelectric Nanocrystals Of Copolymer Vinylidene Fluoride And Trifluoroethylene On An Atomic Force Microscope, R. V. Gaynutdinov, O. A. Lysova, A. L. Tolstikhina, V. M. Fridkin, S. G. Yudin, Stephen Ducharme

Stephen Ducharme Publications

The growth of nanocrystals obtained from Langmuir-Blodgett films of ferroelectric copolymer consisting of 70% vinylidene fluoride and 30% trifluoroethylene has been investigated by atomic force microscopy (AFM). The radius and concentration of nanocrystals are found to depend on the annealing time of the film. A model for nanocrystal growth is proposed which yields adequate time dependences for nanocrystal size parameters. The switching kinetics of individual ferroelectric nanocrystals with an average diameter of 100–200 nm and a height of 15–20 nm has been investigated in the piezoelectric response mode. It is shown that the switching of nanocrystals has an activation character.


Proton Transfer In Surface-Stabilized Chiral Motifs Of Croconic Acid, Donna A. Kunkel, James Hooper, Scott Simpson, Geoffrey Rojas, Stephen Ducharme, Timothy Usher, Eva Zurek, Axel Enders Jan 2013

Proton Transfer In Surface-Stabilized Chiral Motifs Of Croconic Acid, Donna A. Kunkel, James Hooper, Scott Simpson, Geoffrey Rojas, Stephen Ducharme, Timothy Usher, Eva Zurek, Axel Enders

Stephen Ducharme Publications

The structure and cooperative proton ordering of two-dimensional sheets of croconic acid were studied with scanning tunneling microscopy and first-principles calculations. Unlike in the crystalline form, which exhibits a pleated, densely packed polar sheet structure, the confinement of the molecules to the surface results in hydrogenbonded chiral clusters and networks. First-principles calculations suggest that the surface stabilizes networks of configurational isomers, which arise from direct hydrogen transfer between their constituent croconic acid monomers. Some of these configurations have a net polarization. It is demonstrated through constrained molecular dynamics simulations that simultaneous proton transfer between any two molecules can occur spontaneously. …


Scaling Of The Coercive Field In Ferroelectrics At The Nanoscale, R. V. Gaynutdinov, M. Minnekaev, S. Mitko, A. L. Tolstikhina, A. Zenkevich, Stephen Ducharme, Vladimir M. Fridkin Jan 2013

Scaling Of The Coercive Field In Ferroelectrics At The Nanoscale, R. V. Gaynutdinov, M. Minnekaev, S. Mitko, A. L. Tolstikhina, A. Zenkevich, Stephen Ducharme, Vladimir M. Fridkin

Stephen Ducharme Publications

The scaling of the coercive field in ferroelectric films at the nanoscale is investigated experimentally. The scaling in the films of copolymer vinylidene fluoride and BaTiO3 with thickness equal by the order of value to the critical domain nucleus size 1–10 nm reveals deviation from the well-known Kay–Dunn law. At this thickness region coercive field does not depend on thickness and coincides with Landau–Ginzburg–Devonshire value.


Domain Wall Roughness And Creep In Nanoscale Crystalline Ferroelectric Polymers, Zhengguo Xiao, Shashi Poddar, Stephen Ducharme, X. Hong Jan 2013

Domain Wall Roughness And Creep In Nanoscale Crystalline Ferroelectric Polymers, Zhengguo Xiao, Shashi Poddar, Stephen Ducharme, X. Hong

Stephen Ducharme Publications

We report piezo-response force microscopy studies of the static and dynamic properties of domain walls (DWs) in 11 to 36 nm thick films of crystalline ferroelectric poly(vinylidene-fluoride-trifluorethylene). The DW roughness exponent ζ ranges from 0.39 to 0.48 and the DW creep exponent µ varies from 0.20 to 0.28, revealing an unexpected effective dimensionality of ~1.5 that is independent of film thickness. Our results suggest predominantly 2D ferroelectricity in the layered polymer and we attribute the fractal dimensionality to DW deroughening due to the correlations between the in-plane and out-of-plane polarization, an effect that can be exploited to achieve high lateral …


Rhodizonic Acid On Noble Metals: Surface Reactivity And Coordination Chemistry, Donna A. Kunkel, James Hooper, Scott Simpson, Sumit Beniwal, Katie L. Morrow, Douglas C. Smith, Kimberly Cousins, Stephen Ducharme, Eva Zurek, Axel Enders Jan 2013

Rhodizonic Acid On Noble Metals: Surface Reactivity And Coordination Chemistry, Donna A. Kunkel, James Hooper, Scott Simpson, Sumit Beniwal, Katie L. Morrow, Douglas C. Smith, Kimberly Cousins, Stephen Ducharme, Eva Zurek, Axel Enders

Stephen Ducharme Publications

A study of the two-dimensional crystallization of rhodizonic acid on the crystalline surfaces of gold and copper is presented. Rhodizonic acid, a cyclic oxocarbon related to the ferroelectric croconic acid and the antiferroelectric squaric acid, has not been synthesized in bulk crystalline form yet. Capitalizing on surface-assisted molecular self-assembly, a two-dimensional analogue to the well-known solution-based coordination chemistry, two-dimensional structures of rhodizonic acid were stabilized under ultrahigh vacuum on Au(111) and Cu(111) surfaces. Scanning tunneling microscopy, coupled with first-principles calculations, reveals that on the less reactive Au surface, extended two-dimensional islands of rhodizonic acid are formed, in which the molecules …