Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nebraska - Lincoln

2013

Discipline
Keyword
Publication

Articles 1 - 30 of 49

Full-Text Articles in Physics

Optically-Pumped Spin-Exchange Polarized Electron Source, Munir Pirbhai Dec 2013

Optically-Pumped Spin-Exchange Polarized Electron Source, Munir Pirbhai

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Polarized electron beams are an indispensable probe of spin-dependent phenomena in fields of atomic and molecular physics, magnetism and biophysics. While their uses have become widespread, the standard source based on negative electron affinity gallium arsenide (GaAs) remains technically complicated. This has hindered progress on many experiments involving spin-polarized electrons, especially those using target gas loads, which tend to adversely affect the performance of GaAs sources. A robust system based on an alternative way to make polarized electron beams has been devised in this study, which builds on previous work done in our lab. It involves spin-exchange collisions between free ...


Polarization-Coupled Transport Behavior In Ultrathin Ferroelectric Heterostructures, Haidong Lu Dec 2013

Polarization-Coupled Transport Behavior In Ultrathin Ferroelectric Heterostructures, Haidong Lu

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Ferroelectric polarization-coupled resistive switching behavior in ferroelectric tunnel junctions (FTJs), the tunneling electroresistance (TER) effect, is a recently predicted new phenomenon, which attracts interest due to potential application in the next generation non-volatile ferroelectric random access memories (FeRAMs). In this dissertation, we demonstrate the TER effect in FTJ devices by means of scanning probe microscopy (SPM) techniques. We have investigated several device configurations for enhancement of polarization stability and for demonstration of the resistive switching behavior: (i) using the SPM probe as a top electrode; (ii) using heterostructures with engineered interfacial atomic terminations; (iii) using metal electrodes; (iv) adding an ...


Magnetic Anisotropy And Exchange In (001) Textured Fept-Based Nanostructures, Tom George Dec 2013

Magnetic Anisotropy And Exchange In (001) Textured Fept-Based Nanostructures, Tom George

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Hard-magnetic L10 phase FePt has been demonstrated as a promising candidate for future nanomagnetic applications, especially magnetic recording at areal densities approaching 10 Tb/in2. Realization of FePt’s potential in recording media requires control of grain size and intergranular exchange interactions in films with high degrees of L10 order and (001) crystalline texture, including high perpendicular magnetic anisotropy. Furthermore, a write-assist mechanism must be employed to overcome the high coercivity of L10 FePt nanograins. The research described in this dissertation examines potential solutions to the aforementioned problems. Specifically, a nonepitaxial method of fabricating highly (001 ...


Near-Infrared Surface-Enhanced Fluorescence Using Silver Nanoparticles In Solution, Michael D. Furtaw Dec 2013

Near-Infrared Surface-Enhanced Fluorescence Using Silver Nanoparticles In Solution, Michael D. Furtaw

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Fluorescence spectroscopy is a widely used detection technology in many research and clinical assays. Further improvement to assay sensitivity may enable earlier diagnosis of disease, novel biomarker discovery, and ultimately, improved outcomes of clinical care along with reduction in costs. Near-infrared, surface-enhanced fluorescence (NIR-SEF) is a promising approach to improve assay sensitivity via simultaneous increase in signal with a reduction in background. This dissertation describes research conducted with the overall goal to determine the extent to which fluorescence in solution may be enhanced by altering specific variables involved in the formation of plasmonactive nanostructures of dye-labeled protein and silver nanoparticles ...


Resonant Enhancement Of The Harmonic-Generation Spectrum Of Beryllium, Jean Marcel Ngoko Djiokap, Anthony F. Starace Nov 2013

Resonant Enhancement Of The Harmonic-Generation Spectrum Of Beryllium, Jean Marcel Ngoko Djiokap, Anthony F. Starace

Anthony F. Starace Publications

The high-order harmonic-generation (HHG) spectrum of Be is investigated in the multiphoton regime by solving the full-dimensional, two-active-electron, time-dependent Schr¨odinger equation in an intense (≈1013 W/cm2), 30-cycle laser field. As the laser frequency ωL varies from 1.7 to 1.8 eV (which is in the tunable range of a Ti:sapphire laser), the seventh harmonic becomes resonant sequentially with the transition between the ground state and two doubly excited autoionizing states, 2p4s(1P) (at ωL = 1.734 eV) and 2p5s(1P) (at ωL = 1 ...


Carrier-Envelope-Phase-Induced Asymmetries In Double Ionization Of Helium By An Intense Few-Cycle Xuv Pulse, Jean Marcel Ngoko Djiokap, N. L. Manakov, A. V. Meremianin, Anthony F. Starace Nov 2013

Carrier-Envelope-Phase-Induced Asymmetries In Double Ionization Of Helium By An Intense Few-Cycle Xuv Pulse, Jean Marcel Ngoko Djiokap, N. L. Manakov, A. V. Meremianin, Anthony F. Starace

Anthony F. Starace Publications

The carrier-envelope-phase (CEP) dependence of electron angular distributions in double ionization of He by an arbitrarily polarized, few-cycle, intense XUV pulse is formulated using perturbation theory (PT) in the pulse amplitude. Owing to the broad pulse bandwidth, interference of first- and second-order PT amplitudes produces asymmetric angular distributions sensitive to the CEP. The PT parametrization is shown to be valid by comparing with results of solutions of the full-dimensional, two-electron time-dependent Schrödinger equation for the case of linear polarization.


Harmonic Generation Spectroscopy With A Two-Colour Laser Field Having Orthogonal Linear Polarizations, T. S. Sarantseva, M. V. Frolov, N. L. Manakov, M. Yu. Ivanov, Anthony F. Starace Nov 2013

Harmonic Generation Spectroscopy With A Two-Colour Laser Field Having Orthogonal Linear Polarizations, T. S. Sarantseva, M. V. Frolov, N. L. Manakov, M. Yu. Ivanov, Anthony F. Starace

Anthony F. Starace Publications

The interpretation of many high-order harmonic generation (HHG) experiments is based on the assumption that the HHG yield of an atom can be factorized into (i) a laser-dependent ‘electron wave packet’ with rather simple properties, including a nearly universal shape, and (ii) an atomic photorecombination cross section. We show that this factorization is restricted to linearly polarized laser fields and fails in two-colour laser fields with orthogonal polarizations. At the same time, we show how two-colour HHG spectroscopy using orthogonally polarized intense fundamental and relatively weak second harmonic fields makes a complete experiment possible that enables the retrieval of the ...


Interface States In Cofe2o4 Spin-Filter Tunnel Junctions, Pavel V. Lukashev, John D. Burton, Alexander Smogunov, Julian P. Velev, Evgeny Y. Tsymbal Oct 2013

Interface States In Cofe2o4 Spin-Filter Tunnel Junctions, Pavel V. Lukashev, John D. Burton, Alexander Smogunov, Julian P. Velev, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Spin-filter tunneling is a promising way to generate highly spin-polarized current, a key component for spintronics applications. In this paper we explore the tunneling conductance across the spin-filter material CoFe2O4 interfaced with Au electrodes, a geometry which provides nearly perfect lattice matching at the CoFe2O4/Au(001) interface. Using density functional theory calculations we demonstrate that interface states play a decisive role in controlling the transport spin polarization in this tunnel junction. For a realistic CoFe2O4 barrier thickness, we predict a tunneling spin polarization of about −60%. We show that this ...


Polarization-Controlled Ohmic To Schottky Transition At A Metal/Ferroelectric Interface, Xiaohui Liu, Yong Wang, John D. Burton, Evgeny Y. Tsymbal Oct 2013

Polarization-Controlled Ohmic To Schottky Transition At A Metal/Ferroelectric Interface, Xiaohui Liu, Yong Wang, John D. Burton, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Ferroelectric polar displacements have recently been observed in conducting electron-doped BaTiO3 (n-BTO). The coexistence of a ferroelectric phase and conductivity opens the door to new functionalities that may provide a unique route for novel device applications. Using first-principles methods and electrostatic modeling, we explore the effect that the switchable polarization of n-BTO has on the electronic properties of the SrRuO3/n-BTO (001) interface. Ferroelectric polarization controls the accumulation or depletion of electron charge at the interface, and the associated bending of the n-BTO conduction band determines the transport regime across the interface. The interface exhibits ...


Dynamics Underlying The Gaussian Distribution Of The Classical Harmonic Oscillator In Zero-Point Radiation, Wayne Cheng-Wei Huang, Herman Batelaan Oct 2013

Dynamics Underlying The Gaussian Distribution Of The Classical Harmonic Oscillator In Zero-Point Radiation, Wayne Cheng-Wei Huang, Herman Batelaan

Faculty Publications, Department of Physics and Astronomy

Stochastic electrodynamics (SED) predicts a Gaussian probability distribution for a classical harmonic oscillator in the vacuum field. This probability distribution is identical to that of the ground state quantum harmonic oscillator. Thus, the Heisenberg minimum uncertainty relation is recovered in SED. To understand the dynamics that give rise to the uncertainty relation and the Gaussian probability distribution, we perform a numerical simulation and follow the motion of the oscillator. The dynamical information obtained through the simulation provides insight to the connection between the classic double-peak probability distribution and the Gaussian probability distribution. A main objective for SED research is to ...


Polarization Discontinuity Induced Two-Dimensional Electron Gas At Zno/Zn(Mg)O Interfaces: A First-Principles Study, Jesuan Betancourt, J. J. Saavedra-Arias, John D. Burton, Yasuyuki Ishikawa, Evgeny Y. Tsymbal, Julian P. Velev Aug 2013

Polarization Discontinuity Induced Two-Dimensional Electron Gas At Zno/Zn(Mg)O Interfaces: A First-Principles Study, Jesuan Betancourt, J. J. Saavedra-Arias, John D. Burton, Yasuyuki Ishikawa, Evgeny Y. Tsymbal, Julian P. Velev

Evgeny Tsymbal Publications

The discovery of a high-mobility two-dimensional electron gas (2DEG) in wurtzite ZnO/Zn(Mg)O heterostructures is promising for applications due to the high mobility of the carriers. In this paper, we study the formation and properties of the 2DEG at ZnO/Zn(Mg)O interfaces using first-principles calculations based on hybrid density functional theory. The 2DEG arises from the polarization discontinuity at the interface between the two materials. The uncompensated bound charge at the interface gives rise to an electric field in the bulk of ZnO which confines free carriers close to the interface. We find that the type ...


Dynamic Electron Control Using Light And Nanostructure, Wayne Cheng-Wei Huang Aug 2013

Dynamic Electron Control Using Light And Nanostructure, Wayne Cheng-Wei Huang

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

The advent of nano-technology has made possible the manipulation of electron or light through nanostructures. For example, a nano-tip in near-field optical microscopy allows imaging beyond the diffraction limit, and a nano-fabricated hologram is used to produce electron vortex beam. While most schemes of electron control utilize only static components, dynamic electron beam control using both light and nanostructures has not yet been realized. In this dissertation, we explore this possibility and study the interplay between electron, light, and nanostructures. A understanding of such a system may facilitate dynamic electron beam control or even bring new insights to fundamental quantum ...


Ferroelectric And Dielectric Properties Of Electroactive Oligomers And Nanocomposites, Kristin Leigh Kraemer Aug 2013

Ferroelectric And Dielectric Properties Of Electroactive Oligomers And Nanocomposites, Kristin Leigh Kraemer

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Polyvinylidene fluoride (PVDF) and its copolymers have been well established as ferroelectric polymers. The dielectric and ferroelectric properties for vinylidene fluoride (VDF) oligomer thin films were investigated. By synthesizing oligomers instead of long polymer chains, films with higher crystalinity can be formed and the locations of oligomers can be controlled for applications such as molecular electronics.

Evidence of ferroelectricity was observed in oligomer thin films evaporated onto room temperature substrates and by Langmuir-Blodgett (LB) deposition. Voltage and frequency dependence of the capacitance was measured. Oligomers functionalized with phosphonic acid formed self-assembled monolayers (SAM) on aluminum and mica substrates. Film thickness ...


Use Of Zwitterionic Molecules For Forming A Hole Or Electron Transport Layer, Bernard Doudin, Pierre Braunstein, Lucie Routaboul, Guillaume Dalmas, Zhengzheng Zhang, Peter Dowben Aug 2013

Use Of Zwitterionic Molecules For Forming A Hole Or Electron Transport Layer, Bernard Doudin, Pierre Braunstein, Lucie Routaboul, Guillaume Dalmas, Zhengzheng Zhang, Peter Dowben

Peter Dowben Publications

The invention relates to the use of zwitterionic molecules for forming a hole or electron transport layer. The preferred zwitterionic molecules of the invention are derivatives of p-benzoquinonemonoimines. The invention is useful in the field of electronic devices in particular.


Electron Matter Optics Of The Aharonov-Bohm And Stern-Gerlach Effects, Scot Mcgregor Jul 2013

Electron Matter Optics Of The Aharonov-Bohm And Stern-Gerlach Effects, Scot Mcgregor

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Since the advent of quantum mechanics and the idea that massive particles exhibit wave properties, physicists have made efforts to make use of the short deBroglie wave length of matter waves for fundamental as well as practical studies. Among these are the precise measurements allowed by interference, diffraction, and microscopy as well as the study of more fundamental aspects of quantum theory such as the Aharonov-Bohm effects or the Stern-Gerlach effect, which are described below. However, in order to use matter waves to observe any of these effects it is necessary to produce and maintain coherence in the waves which ...


Magnetic Interactions In Low-Dimensional Iron Nanostructures, Rui Zhang Jul 2013

Magnetic Interactions In Low-Dimensional Iron Nanostructures, Rui Zhang

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Three systems involving low-dimensional magnetic nanostructures, namely the Kondo Effect in Isolated Cu(Fe) Clusters, Magnetization Reversal in Transition-Metal/Fe:SiO2 Thin Films, and Anisotropy and Micromagnetism of Fe/CrPt Bilayers, have been investigated to understand the magnetic interactions in iron nanostructures.

Kondo Effect in Isolated Cu(Fe) Clusters —Iron impurities were added into copper clusters embedded in an insulating matrix to ensure that the Kondo effect is strictly confined by the size of the cluster. The Kondo temperature of our naoscale system is 0.7 K, which is greatly suppressed from its bulk value of 29 K and ...


Ttbar Production Cross Section Measurement In The Muon Plus Jets Channel Using Soft Electron Tagging In Pp Collisions At Sqrt(S) = 8 Tev, Jason Keller Jul 2013

Ttbar Production Cross Section Measurement In The Muon Plus Jets Channel Using Soft Electron Tagging In Pp Collisions At Sqrt(S) = 8 Tev, Jason Keller

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

A measurement is made of the top quark pair production cross section through the decay channel ttbar -> mu nu + jets, carried out using the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC), located at CERN in Geneva, Switzerland. The top quark pair events were produced in proton-proton collisions at a center-of-mass energy of 8 TeV. To facilitate the detection of ttbar events, jets produced from bottom quarks, which are decay products of the top quarks, are identified using electrons with low transverse momentum with respect to the beam axis (soft electrons). The dominant background, W + jets production ...


Anomalous And Spin Hall Effects In A Magnetic Tunnel Junction With Rashba Spin-Orbit Coupling, A. V. Vedyayev, M. S. Titova, N. V. Ryzhanova, M. Ye. Zhuravlev, Evgeny Y. Tsymbal Jul 2013

Anomalous And Spin Hall Effects In A Magnetic Tunnel Junction With Rashba Spin-Orbit Coupling, A. V. Vedyayev, M. S. Titova, N. V. Ryzhanova, M. Ye. Zhuravlev, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Anomalous and spin Hall effects are investigated theoretically for a magnetic tunnel junction where the applied voltage produces a Rashba spin-orbit coupling within the tunneling barrier layer. The ferromagnetic electrodes are the source of the spin-polarized current. The tunneling electrons experience a spin-orbit coupling inside the barrier due to the applied electrical field. Charge and spin Hall currents are calculated as functions of the position inside the barrier and the angle between the magnetizations of the electrodes. We find that both charge and spin Hall currents are located inside the barrier near the interfaces. The dependence of the currents on ...


Asymmetries In Production Of He+(N = 2) With An Intense Few-Cycle Attosecond Pulse, Jean Marcel Ngoko Djiokap, S. X. Hu, Wei-Chao Jiang, Liang-You Peng, Anthony F. Starace Jul 2013

Asymmetries In Production Of He+(N = 2) With An Intense Few-Cycle Attosecond Pulse, Jean Marcel Ngoko Djiokap, S. X. Hu, Wei-Chao Jiang, Liang-You Peng, Anthony F. Starace

Anthony F. Starace Publications

By solving the two-electron time-dependent Schrödinger equation, we study carrier-envelope-phase (CEP) effects on ionization plus excitation of He to He+(n = 2) states by a few-cycle attosecond pulse with a carrier frequency of 51 eV. For most CEPs the asymmetries in the photoelectron angular distributions with excitation of He+(2s) or He+(2p) have opposite signs and are two orders of magnitude larger than for ionization without excitation. These results indicate that attosecond pulse CEP effects may be significantly amplified in correlated two-electron ionization processes.


Ab-Initio And Model Studies Of Spin Fluctuation Effects In Transport And Thermodynamics Of Magnetic Metals, James K. Glasbrenner Mar 2013

Ab-Initio And Model Studies Of Spin Fluctuation Effects In Transport And Thermodynamics Of Magnetic Metals, James K. Glasbrenner

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Magnetic materials are vital to many devices and the manipulation of spins is central to the operation of novel devices such as spin transistors. It is important to understand the effect of spin fluctuations on such systems. In this dissertation, first-principles calculations and models further the understanding of spin fluctuation effects in the transport and thermodynamics of magnetic metals.

A simple classical spin-fluctuation Hamiltonian with a single itinerancy parameter is studied using the mean-field approximation, Monte Carlo simulations, and a generalized Onsager cavity field method. The results of these different methods are in agreement. It is found that the thermodynamics ...


Study Of The Growth And Switching Kinetics On Ferroelectric Nanocrystals Of Copolymer Vinylidene Fluoride And Trifluoroethylene On An Atomic Force Microscope, R. V. Gaynutdinov, O. A. Lysova, A. L. Tolstikhina, V. M. Fridkin, S. G. Yudin, Stephen Ducharme Mar 2013

Study Of The Growth And Switching Kinetics On Ferroelectric Nanocrystals Of Copolymer Vinylidene Fluoride And Trifluoroethylene On An Atomic Force Microscope, R. V. Gaynutdinov, O. A. Lysova, A. L. Tolstikhina, V. M. Fridkin, S. G. Yudin, Stephen Ducharme

Stephen Ducharme Publications

The growth of nanocrystals obtained from Langmuir-Blodgett films of ferroelectric copolymer consisting of 70% vinylidene fluoride and 30% trifluoroethylene has been investigated by atomic force microscopy (AFM). The radius and concentration of nanocrystals are found to depend on the annealing time of the film. A model for nanocrystal growth is proposed which yields adequate time dependences for nanocrystal size parameters. The switching kinetics of individual ferroelectric nanocrystals with an average diameter of 100–200 nm and a height of 15–20 nm has been investigated in the piezoelectric response mode. It is shown that the switching of nanocrystals has an ...


Hydroxyl-Decorated Graphene Systems As Candidates For Organic Metal-Free Ferroelectrics, Multiferroics, And High-Performance Proton Battery Cathode Materials, Menghao Wu, John D. Burton, Evgeny Y. Tsymbal, Xiao Cheng Zeng, Purusottam Jena Feb 2013

Hydroxyl-Decorated Graphene Systems As Candidates For Organic Metal-Free Ferroelectrics, Multiferroics, And High-Performance Proton Battery Cathode Materials, Menghao Wu, John D. Burton, Evgeny Y. Tsymbal, Xiao Cheng Zeng, Purusottam Jena

Evgeny Tsymbal Publications

Using a first-principles method we show that graphene based materials, functionalized with hydroxyl groups, constitute a class of multifunctional, lightweight, and nontoxic organic materials with functional properties such as ferroelectricity, multiferroicity, and can be used as proton battery cathode materials. For example, the polarizations of semihydroxylized graphane and graphone, as well as fully hydroxylized graphane, are much higher than any organic ferroelectric materials known to date. Further, hydroxylized graphene nanoribbons with proton vacancies at the end can have much larger dipole moments. They may also be applied as high-capacity cathode materials with a specific capacity that is six times larger ...


Growth Diagram Of La0.7sr0.3mno3 Thin Films Using Pulsed Laser Deposition, Hangwen Guo, Dali Sun, Wenbin Wang, Zheng Gai, Ivan Kravchenko, Jian Shao, Lu Jiang, Thomas Z. Ward, Paul C. Snijders, Lifeng Yin, Jian Shao, Xiaoshan Xu Jan 2013

Growth Diagram Of La0.7sr0.3mno3 Thin Films Using Pulsed Laser Deposition, Hangwen Guo, Dali Sun, Wenbin Wang, Zheng Gai, Ivan Kravchenko, Jian Shao, Lu Jiang, Thomas Z. Ward, Paul C. Snijders, Lifeng Yin, Jian Shao, Xiaoshan Xu

Xiaoshan Xu Papers

An experimental study was conducted on controlling the growth mode of La0.7Sr0.3MnO3 thin films on SrTiO3 substrates using pulsed laser deposition (PLD) by tuning growth temperature, pressure, and laser fluence. Different thin film morphology, crystallinity, and stoichiometry have been observed depending on growth parameters. To understand the microscopic origin, the adatom nucleation, step advance processes, and their relationship to film growth were theoretically analyzed and a growth diagram was constructed. Three boundaries between highly and poorly crystallized growth, 2D and 3D growth, stoichiometric and non-stoichiometric growth were identified in the growth diagram ...


Magnetoelectric Coupling At The Euo/Batio3 Interface, Shi Cao, P Liu, Jinke Tang, Haidong Lu, C W. Bark, Sangjin Ryu, Chang-Beom Eom, Alexei Gruverman, Peter A. Dowben Jan 2013

Magnetoelectric Coupling At The Euo/Batio3 Interface, Shi Cao, P Liu, Jinke Tang, Haidong Lu, C W. Bark, Sangjin Ryu, Chang-Beom Eom, Alexei Gruverman, Peter A. Dowben

Peter Dowben Publications

Magnetization modulation by ferroelectric polarization switching is reported for the ferromagnetic-ferroelectric EuO/BaTiO3heterostructure. The value of the magnetization critical exponent β is consistent with the expected Heisenberg-like ferromagnetism of EuO and reported Curie temperature. The critical exponent is seen to decrease with increased magnetic coupling. The results are discussed in the context of data obtained earlier for epitaxial La0.67Sr0.33MnO3/BaTiO3 heterostructures, where magnetization increases and critical exponent b also declines with ferroelectric polarization pointing away from ferromagnetic layer. The observed similarity between two systems illustrates an importance of charge doping ...


The Debye Temperature For Hydrothermally Grown Tho2 Single Crystals, Tony D. Kelly, James C. Petrosky, John W. Mcclory, Timothy Zens, David Turner, J Matthew Mann, Joseph W. Kolis, Juan A. Colon Santana, Peter A. Dowben Jan 2013

The Debye Temperature For Hydrothermally Grown Tho2 Single Crystals, Tony D. Kelly, James C. Petrosky, John W. Mcclory, Timothy Zens, David Turner, J Matthew Mann, Joseph W. Kolis, Juan A. Colon Santana, Peter A. Dowben

Peter Dowben Publications

The electronic properties of ThO2 single crystals were studied using x-ray photoemission spectroscopy (XPS). The XPS results show that the Th 4f core level is in an oxidation state that is consistent with that expected for Th in ThO2. The effective Debye temperature is estimated from the temperature dependent photoemission intensities of the Th 4f core level over the temperature range of 290 to 360 K. A Debye temperature of 468±32 K has been determined.


Room-Temperature Multiferroic Hexagonal Lufeo3 Films, Wenbin Wang, Jun Zhao, Wenbo Wang, Zheng Gai, Nina Balke, Miaofang Chi, Ho Nyung Lee, Wei Tian, Leyi Zhu, Xuemei Cheng, David J. Keavney, Jieyu Yi, Thomas Z. Ward, Paul C. Snijders, Hans M. Christen, Weida Wu, Jian Shen, Xiaoshan Xu Jan 2013

Room-Temperature Multiferroic Hexagonal Lufeo3 Films, Wenbin Wang, Jun Zhao, Wenbo Wang, Zheng Gai, Nina Balke, Miaofang Chi, Ho Nyung Lee, Wei Tian, Leyi Zhu, Xuemei Cheng, David J. Keavney, Jieyu Yi, Thomas Z. Ward, Paul C. Snijders, Hans M. Christen, Weida Wu, Jian Shen, Xiaoshan Xu

Xiaoshan Xu Papers

The crystal and magnetic structures of single-crystalline hexagonal LuFeO3 films have been studied using x-ray, electron, and neutron diffraction methods. The polar structure of these films are found to persist up to 1050 K; and the switchability of the polar behavior is observed at room temperature, indicating ferroelectricity. An antiferromagnetic order was shown to occur below 440 K, followed by a spin reorientation resulting in a weak ferromagnetic order below 130 K. This observation of coexisting multiple ferroic orders demonstrates that hexagonal LuFeO3 films are room-temperature multiferroics.


Proton Transfer In Surface-Stabilized Chiral Motifs Of Croconic Acid, Donna A. Kunkel, James Hooper, Scott Simpson, Geoffrey Rojas, Stephen Ducharme, Timothy Usher, Eva Zurek, Axel Enders Jan 2013

Proton Transfer In Surface-Stabilized Chiral Motifs Of Croconic Acid, Donna A. Kunkel, James Hooper, Scott Simpson, Geoffrey Rojas, Stephen Ducharme, Timothy Usher, Eva Zurek, Axel Enders

Stephen Ducharme Publications

The structure and cooperative proton ordering of two-dimensional sheets of croconic acid were studied with scanning tunneling microscopy and first-principles calculations. Unlike in the crystalline form, which exhibits a pleated, densely packed polar sheet structure, the confinement of the molecules to the surface results in hydrogenbonded chiral clusters and networks. First-principles calculations suggest that the surface stabilizes networks of configurational isomers, which arise from direct hydrogen transfer between their constituent croconic acid monomers. Some of these configurations have a net polarization. It is demonstrated through constrained molecular dynamics simulations that simultaneous proton transfer between any two molecules can occur spontaneously ...


Scaling Of The Coercive Field In Ferroelectrics At The Nanoscale, R. V. Gaynutdinov, M. Minnekaev, S. Mitko, A. L. Tolstikhina, A. Zenkevich, Stephen Ducharme, Vladimir M. Fridkin Jan 2013

Scaling Of The Coercive Field In Ferroelectrics At The Nanoscale, R. V. Gaynutdinov, M. Minnekaev, S. Mitko, A. L. Tolstikhina, A. Zenkevich, Stephen Ducharme, Vladimir M. Fridkin

Stephen Ducharme Publications

The scaling of the coercive field in ferroelectric films at the nanoscale is investigated experimentally. The scaling in the films of copolymer vinylidene fluoride and BaTiO3 with thickness equal by the order of value to the critical domain nucleus size 1–10 nm reveals deviation from the well-known Kay–Dunn law. At this thickness region coercive field does not depend on thickness and coincides with Landau–Ginzburg–Devonshire value.


Domain Wall Roughness And Creep In Nanoscale Crystalline Ferroelectric Polymers, Zhengguo Xiao, Shashi Poddar, Stephen Ducharme, X. Hong Jan 2013

Domain Wall Roughness And Creep In Nanoscale Crystalline Ferroelectric Polymers, Zhengguo Xiao, Shashi Poddar, Stephen Ducharme, X. Hong

Stephen Ducharme Publications

We report piezo-response force microscopy studies of the static and dynamic properties of domain walls (DWs) in 11 to 36 nm thick films of crystalline ferroelectric poly(vinylidene-fluoride-trifluorethylene). The DW roughness exponent ζ ranges from 0.39 to 0.48 and the DW creep exponent µ varies from 0.20 to 0.28, revealing an unexpected effective dimensionality of ~1.5 that is independent of film thickness. Our results suggest predominantly 2D ferroelectricity in the layered polymer and we attribute the fractal dimensionality to DW deroughening due to the correlations between the in-plane and out-of-plane polarization, an effect that can ...


Exafs And Epr Analysis Of The Local Structure Of Mn-Doped Li2B4O7, T D. Kelly, L Kong, D A. Buchanan, A T. Brant, J. C. Petrosky, J W. Mcclory, V T. Adamiv, Y V. Burak, Peter A. Dowben Jan 2013

Exafs And Epr Analysis Of The Local Structure Of Mn-Doped Li2B4O7, T D. Kelly, L Kong, D A. Buchanan, A T. Brant, J. C. Petrosky, J W. Mcclory, V T. Adamiv, Y V. Burak, Peter A. Dowben

Peter Dowben Publications

The local structure of Mn-doped Li2B4O7(001) was investigated using extended X-ray absorption fine structure (EXAFS) at the Mn K edge and electron paramagnetic resonance (EPR). The location of the Mn dopant in a lithium tetraborate crystal is consistent with occupation of a site with strong oxygen coordination. The Mn–O bond lengths are similar to those observed with Mn doping of the icosahedral based boron carbide whereMnis in a substitutional dopant in one of the cage sites. From EXAFS, the manganese does not appear to greatly alter the overall tetragonal form of lithium tetraborate ...