Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 46

Full-Text Articles in Physics

Search For Resonant Double Higgs Production With Bbzz Decays In The Bbℓℓνν Final State In Pp Collisions At √S = 13 Tev, Rami Kamalieddin Jul 2019

Search For Resonant Double Higgs Production With Bbzz Decays In The Bbℓℓνν Final State In Pp Collisions At √S = 13 Tev, Rami Kamalieddin

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Since the discovery of the Higgs boson in 2012 by the ATLAS and CMS experiments, most of the quantum mechanical properties that describe the long-awaited Higgs boson have been measured. Due to the outstanding work of the LHC, over a hundred of fb−1 of proton collisions data have been delivered to both experiments. Finally, it became sensible for analyses teams to start working with a very low cross section processes involving the Higgs boson, e.g., a recent success in observing ttH and VHbb processes. One of the main remaining untouched topics is a double Higgs boson production. However ...


Free Electron Sources And Diffraction In Time, Eric R. Jones May 2019

Free Electron Sources And Diffraction In Time, Eric R. Jones

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

The quantum revolution of the last century advanced synergistically with technology, for example, with control of the temporal and spatial coherence, and the polarization state of light. Indeed, experimental confirmation of the quirks of quantum theory, as originally highlighted by Einstein, Podolsky, and Rosen, through Bohm, and then Bell, have been performed with photons, i.e., electromagnetic wave packets prepared in the same quantum states. Experimental tests of quantum mechanics with matter wave packets have been limited due to challenges in preparing all of the packets with similar quantum states. While great strides have been made for trapped atoms and ...


Perturbative Generalization Of Nonparaxial Ultrashort Tightly-Focused Elegant Laguerre-Gaussian Beams, Andrew M. Vikartofsky Apr 2019

Perturbative Generalization Of Nonparaxial Ultrashort Tightly-Focused Elegant Laguerre-Gaussian Beams, Andrew M. Vikartofsky

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

An analytical method for calculating the electromagnetic fields of a nonparaxial elegant Laguerre-Gaussian (eLG) vortex beam is presented for arbitrary pulse duration, spot size, and LG mode. This perturbative approach provides a numerically tractable model for the calculation of arbitrarily high radial and azimuthal LG modes in the nonparaxial regime, without requiring integral representations of the fields. A key feature of this perturbative model is its use of a Poisson-like frequency spectrum, which allows for the proper description of pulses of arbitrarily short duration. The time-domain representation of this model is presented as a non-recursive closed-form expression to any order ...


Search For Production Of A Higgs Boson And A Single Top Quark In Multilepton Final States In Pp Collisions At √S = 13 Tev, Jose Andres Monroy Montanez Jul 2018

Search For Production Of A Higgs Boson And A Single Top Quark In Multilepton Final States In Pp Collisions At √S = 13 Tev, Jose Andres Monroy Montanez

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

The exciting work in high energy physics includes not only the analysis of the data taken by the experiment but also the development of detection systems. In this thesis, the results of a search for the production of a Higgs boson in association with a single top quark (tH) are presented. This process is of particular interest due to its sensitivity to the relative sign of the top-Higgs coupling and the vector bosons-Higgs coupling. The focus is on leptonic signatures provided by the H → W W , H → τ τ , and H → ZZ decay modes.

The analysis exploits final states with ...


Investigations Of Novel Sources Of Spin-Polarized Electrons, Evan Brunkow May 2018

Investigations Of Novel Sources Of Spin-Polarized Electrons, Evan Brunkow

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Using a pulsed laser, we investigated the spin-polarization of electrons emitted from bulk GaAs, Ti and Pd chiral nanostructures, and electro-chemically thinned GaAs. Standard sources of spin-polarized electrons from GaAs can have polarizations of approximately 30%, while state-of-the-art spin-polarized electron sources using GaAs cathodes can have as high as 85% spin polarization. Drawbacks for these sources are that they require constant upkeep, have strict vacuum requirements, and are very difficult to learn how to use. For these reasons, we investigated new methods through a different emission process and different materials to see if we could measure a spin-polarization from these ...


Angle-Resolved Observation Of X-Ray Second Harmonic Generation In Diamond, Björn Senfftleben Dec 2017

Angle-Resolved Observation Of X-Ray Second Harmonic Generation In Diamond, Björn Senfftleben

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

This thesis reports angularly-resolved observation of X-ray second harmonic generation (XSHG) in diamond at several phase-matching geometries. The XSHG signal was produced by ultra-short, highly intense X-ray pulses with a photon energy of 9.831 keV generated by a free-electron laser. In some geometries for high pulse energies more than 10 second harmonic photons per pulse were generated.

Different phase-matched geometries were used for XSHG to investigate the angular dependence of the efficiency of the process. Furthermore, for each phase-matching condition, the quadratic dependence for second harmonic generation at each geometry was verified and the crystal rocking curves were measured ...


A Measurement Of The Cross Section At √S = 8 Tev In Pp Collisions With The Cms Detector, Ekaterina Avdeeva Dec 2017

A Measurement Of The Wγ Cross Section At √S = 8 Tev In Pp Collisions With The Cms Detector, Ekaterina Avdeeva

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

A measurement of cross section of the Wγ → lνγ production in proton-proton collisions using 19.6 fb − 1 of LHC data collected by CMS detector at the center- √ of-mass collision energy of s = 8 TeV is reported. The W bosons are identified in their electron and muon decay modes. The process of Wγ production in the Standard Model (SM) involves a pure gauge boson coupling, a WWγ vertex, which allows one to test the electroweak sector of the SM in a unique way not achievable by studies of other processes. In addition to the total cross section, we measure the ...


Design And Construction Of A High-Current Femtosecond Gas-Phase Electron Diffraction Setup, Omid Zandi Dec 2017

Design And Construction Of A High-Current Femtosecond Gas-Phase Electron Diffraction Setup, Omid Zandi

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

We designed and constructed a state-of-the-art high current ultrafast gas electron diffraction experimental setup, which resolved two main challenges that constraint temporal resolution in previous setups. These aforementioned bottlenecks were: the space charge effect due to the Coulomb expansion, and the velocity mismatch between the sub-relativistic electrons (probe) and the exciting laser pulse (pump). In our setup, the problem of space charge effect was ameliorated by compressing 90 keV photo-emitted electron pulses using a radio-frequency electric field. The compression allowed us to increase the beam current by almost two orders of magnitude higher than previously reported. We developed a laser-activated ...


Surfaces And Interfaces Of Magnetoelectric Oxide Systems, Shi Cao Oct 2017

Surfaces And Interfaces Of Magnetoelectric Oxide Systems, Shi Cao

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Magnetoelectric materials Cr2O3, hexagonal LuFeO3 and YbFeO3 are studied in this thesis. The surface of chromia (Cr2O3) has a surface electronic structure distinct from the bulk. Our work shows that placing a Cr2O3 single crystal into a single domain state will result in net Cr2O3 spin polarization at the boundary, even in the presence of a gold overlayer. From the Cr 2p3=2 X-ray magnetic circular dichroism signal, there is clear evidence of interface polarization with overlayers of both Pd and Pt on chromia. Cobalt thin films on Cr2O3(0001) show larger magnetic contrast in magnetic force microscopy indicating enhancement ...


Novel Half-Metallic And Spin-Gapless Heusler Compounds, Yunlong Jin Aug 2017

Novel Half-Metallic And Spin-Gapless Heusler Compounds, Yunlong Jin

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

This thesis is devoted to experimental studies of Heusler compounds CoFeCrAl, CoFeCrX (X = Si, Ge) and Mn2PtSn. These Heusler alloys present an interesting class of ferromagnetic materials for spintronic applications since they are predicted to be spin gapless semiconductors and have half-metallic properties with 100 % spin polarization at the Fermi level. In this thesis, the structural, magnetic, spin-polarization and electron- transport properties of the fabricated alloys were studied. CoFeCrAl thin films deposited on MgO exhibit nearly perfect epitaxy and a high degree of L21 Heusler order. All considered types of chemical disorder destroy the spin-gapless semiconductivity of ...


Fabrication And Study Of The Structure And Magnetism Of Rare-Earth Free Nanoclusters, Bhaskar Das Apr 2017

Fabrication And Study Of The Structure And Magnetism Of Rare-Earth Free Nanoclusters, Bhaskar Das

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

No abstract provided.


The Organic Ferroelectric Vinylidene Fluoride Oligomer: Vacuum Deposition, Properties, And Interfaces, Keith Foreman Jan 2017

The Organic Ferroelectric Vinylidene Fluoride Oligomer: Vacuum Deposition, Properties, And Interfaces, Keith Foreman

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Organic ferroelectric materials combine the versatility and customizability afforded by organic synthesis with the functionality of ferroelectric materials. The model ferroelectric polymer, poly(vinylidene fluoride) (PVDF), is used in a wide variety of applications and is still the subject of fundamental research nearly 80 years after it was first polymerized. Unfortunately, PVDF suffers from thermal decomposition during thin film evaporation in vacuum. Since PVDF thin films cannot be deposited in the ferroelectric phase in vacuum conditions, its use in new, 21st century technologies may be limited since the interface between the organic and adjacent metallic thin films is less ...


Low-Dimensional Materials For Organic Electronic Applications, Sumit Beniwal Aug 2016

Low-Dimensional Materials For Organic Electronic Applications, Sumit Beniwal

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

This thesis explores the self-assembly, surface interactions and electronic properties of functional molecules that have potential applications in electronics. Three classes of molecules - organic ferroelectric, spin-crossover complex, and molecules that assemble into a 2D semiconductor, have been studied through scanning tunneling microscopy and surfacesensitive spectroscopic methods. The scientific goal of this thesis is to understand the self-assembly of these molecules in low-dimensional (2D) configurations and the influence of substrate on their properties. First, a H-bonded organic ferroelectric, the 3-Hydroxyphenalenone, is studied on two noble metal substrates. It is demonstrated how a variety of different assemblies including 1D chains, p-p stacked ...


Ferroelectric Polarization Dependent Interface Effects, Xiaohui Liu Dec 2014

Ferroelectric Polarization Dependent Interface Effects, Xiaohui Liu

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Utilization of the switchable spontaneous polarization of nanometer scale ferroelectric materials offers a promising avenue for future nanoelectronic devices. In this dissertation, we use density-functional calculations and phenomenological modeling to explore the effects of interface termination on thin-film heterostructures, the effects of electron doping in bulk ferroelectric materials on ferroelectric stability, and the effects of ferroelectric polarization switching on the electronic and transport properties of interfaces.

For SrRuO3/BaTiO3/SrRuO3 epitaxial heterostructures grown on SrTiO3, we find that the built-in dipole at the BaO/RuO2 terminated interface leads to a strong preference for one polarization ...


Electron Matter Interferometry And The Electron Double-Slit Experiment, Roger Bach Apr 2014

Electron Matter Interferometry And The Electron Double-Slit Experiment, Roger Bach

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Quantum mechanics has fundamentally changed the way scientists think about the world. Quantum mechanical theory has found it's way into our everyday lives through advances in technology. In this dissertation a fundamental quantum mechanical demonstration and the technological development of a new quantum mechanical device are presented.

Double-slit diffraction is a corner stone of quantum mechanics. It illustrates key features of quantum mechanics: interference and the particle-wave duality of matter. Here we demonstrate the full realization of Richard Feynman's famous thought experiment. By placing a movable mask in front of a double-slit to control the transmission through the ...


Optically-Pumped Spin-Exchange Polarized Electron Source, Munir Pirbhai Dec 2013

Optically-Pumped Spin-Exchange Polarized Electron Source, Munir Pirbhai

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Polarized electron beams are an indispensable probe of spin-dependent phenomena in fields of atomic and molecular physics, magnetism and biophysics. While their uses have become widespread, the standard source based on negative electron affinity gallium arsenide (GaAs) remains technically complicated. This has hindered progress on many experiments involving spin-polarized electrons, especially those using target gas loads, which tend to adversely affect the performance of GaAs sources. A robust system based on an alternative way to make polarized electron beams has been devised in this study, which builds on previous work done in our lab. It involves spin-exchange collisions between free ...


Polarization-Coupled Transport Behavior In Ultrathin Ferroelectric Heterostructures, Haidong Lu Dec 2013

Polarization-Coupled Transport Behavior In Ultrathin Ferroelectric Heterostructures, Haidong Lu

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Ferroelectric polarization-coupled resistive switching behavior in ferroelectric tunnel junctions (FTJs), the tunneling electroresistance (TER) effect, is a recently predicted new phenomenon, which attracts interest due to potential application in the next generation non-volatile ferroelectric random access memories (FeRAMs). In this dissertation, we demonstrate the TER effect in FTJ devices by means of scanning probe microscopy (SPM) techniques. We have investigated several device configurations for enhancement of polarization stability and for demonstration of the resistive switching behavior: (i) using the SPM probe as a top electrode; (ii) using heterostructures with engineered interfacial atomic terminations; (iii) using metal electrodes; (iv) adding an ...


Magnetic Anisotropy And Exchange In (001) Textured Fept-Based Nanostructures, Tom George Dec 2013

Magnetic Anisotropy And Exchange In (001) Textured Fept-Based Nanostructures, Tom George

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Hard-magnetic L10 phase FePt has been demonstrated as a promising candidate for future nanomagnetic applications, especially magnetic recording at areal densities approaching 10 Tb/in2. Realization of FePt’s potential in recording media requires control of grain size and intergranular exchange interactions in films with high degrees of L10 order and (001) crystalline texture, including high perpendicular magnetic anisotropy. Furthermore, a write-assist mechanism must be employed to overcome the high coercivity of L10 FePt nanograins. The research described in this dissertation examines potential solutions to the aforementioned problems. Specifically, a nonepitaxial method of fabricating highly (001 ...


Dynamic Electron Control Using Light And Nanostructure, Wayne Cheng-Wei Huang Aug 2013

Dynamic Electron Control Using Light And Nanostructure, Wayne Cheng-Wei Huang

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

The advent of nano-technology has made possible the manipulation of electron or light through nanostructures. For example, a nano-tip in near-field optical microscopy allows imaging beyond the diffraction limit, and a nano-fabricated hologram is used to produce electron vortex beam. While most schemes of electron control utilize only static components, dynamic electron beam control using both light and nanostructures has not yet been realized. In this dissertation, we explore this possibility and study the interplay between electron, light, and nanostructures. A understanding of such a system may facilitate dynamic electron beam control or even bring new insights to fundamental quantum ...


Ferroelectric And Dielectric Properties Of Electroactive Oligomers And Nanocomposites, Kristin Leigh Kraemer Aug 2013

Ferroelectric And Dielectric Properties Of Electroactive Oligomers And Nanocomposites, Kristin Leigh Kraemer

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Polyvinylidene fluoride (PVDF) and its copolymers have been well established as ferroelectric polymers. The dielectric and ferroelectric properties for vinylidene fluoride (VDF) oligomer thin films were investigated. By synthesizing oligomers instead of long polymer chains, films with higher crystalinity can be formed and the locations of oligomers can be controlled for applications such as molecular electronics.

Evidence of ferroelectricity was observed in oligomer thin films evaporated onto room temperature substrates and by Langmuir-Blodgett (LB) deposition. Voltage and frequency dependence of the capacitance was measured. Oligomers functionalized with phosphonic acid formed self-assembled monolayers (SAM) on aluminum and mica substrates. Film thickness ...


Electron Matter Optics Of The Aharonov-Bohm And Stern-Gerlach Effects, Scot Mcgregor Jul 2013

Electron Matter Optics Of The Aharonov-Bohm And Stern-Gerlach Effects, Scot Mcgregor

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Since the advent of quantum mechanics and the idea that massive particles exhibit wave properties, physicists have made efforts to make use of the short deBroglie wave length of matter waves for fundamental as well as practical studies. Among these are the precise measurements allowed by interference, diffraction, and microscopy as well as the study of more fundamental aspects of quantum theory such as the Aharonov-Bohm effects or the Stern-Gerlach effect, which are described below. However, in order to use matter waves to observe any of these effects it is necessary to produce and maintain coherence in the waves which ...


Magnetic Interactions In Low-Dimensional Iron Nanostructures, Rui Zhang Jul 2013

Magnetic Interactions In Low-Dimensional Iron Nanostructures, Rui Zhang

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Three systems involving low-dimensional magnetic nanostructures, namely the Kondo Effect in Isolated Cu(Fe) Clusters, Magnetization Reversal in Transition-Metal/Fe:SiO2 Thin Films, and Anisotropy and Micromagnetism of Fe/CrPt Bilayers, have been investigated to understand the magnetic interactions in iron nanostructures.

Kondo Effect in Isolated Cu(Fe) Clusters —Iron impurities were added into copper clusters embedded in an insulating matrix to ensure that the Kondo effect is strictly confined by the size of the cluster. The Kondo temperature of our naoscale system is 0.7 K, which is greatly suppressed from its bulk value of 29 K and ...


Ttbar Production Cross Section Measurement In The Muon Plus Jets Channel Using Soft Electron Tagging In Pp Collisions At Sqrt(S) = 8 Tev, Jason Keller Jul 2013

Ttbar Production Cross Section Measurement In The Muon Plus Jets Channel Using Soft Electron Tagging In Pp Collisions At Sqrt(S) = 8 Tev, Jason Keller

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

A measurement is made of the top quark pair production cross section through the decay channel ttbar -> mu nu + jets, carried out using the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC), located at CERN in Geneva, Switzerland. The top quark pair events were produced in proton-proton collisions at a center-of-mass energy of 8 TeV. To facilitate the detection of ttbar events, jets produced from bottom quarks, which are decay products of the top quarks, are identified using electrons with low transverse momentum with respect to the beam axis (soft electrons). The dominant background, W + jets production ...


Ab-Initio And Model Studies Of Spin Fluctuation Effects In Transport And Thermodynamics Of Magnetic Metals, James K. Glasbrenner Mar 2013

Ab-Initio And Model Studies Of Spin Fluctuation Effects In Transport And Thermodynamics Of Magnetic Metals, James K. Glasbrenner

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Magnetic materials are vital to many devices and the manipulation of spins is central to the operation of novel devices such as spin transistors. It is important to understand the effect of spin fluctuations on such systems. In this dissertation, first-principles calculations and models further the understanding of spin fluctuation effects in the transport and thermodynamics of magnetic metals.

A simple classical spin-fluctuation Hamiltonian with a single itinerancy parameter is studied using the mean-field approximation, Monte Carlo simulations, and a generalized Onsager cavity field method. The results of these different methods are in agreement. It is found that the thermodynamics ...


Electron-Phonon Coupling And Structural Phase Transitions On Au/Mo(112), Keisuke Fukutani Nov 2012

Electron-Phonon Coupling And Structural Phase Transitions On Au/Mo(112), Keisuke Fukutani

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

The electronic structures, many-body interactions and Fermi surface topologies of Au/Mo(112) were investigated in detail and were found to play important roles in the newly discovered order-disorder structural phase transition of the system. First, the high-resolution angle-resolved photoemission spectroscopy was utilized to characterize the electronic band structure of Mo(112) in far greater details than before. This elucidated the existence of several surface-derived states and their dispersion relations in high precisions near the Fermi level, as well as the symmetries of the bulk and surface electronic states, which are in good quantitative agreement with the ab-initio calculations. Such ...


Ultrafast Intense-Field Photoionization And Photofragmentation Of Systematic Series Of Substituted Organic Molecules, Timothy D. Scarborough Apr 2012

Ultrafast Intense-Field Photoionization And Photofragmentation Of Systematic Series Of Substituted Organic Molecules, Timothy D. Scarborough

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

The abundance and relevance of organic molecules similar to benzene makes their study important. Studying the interactions of such molecules with intense light fields has implications for the generation of short-wavelength radiation, attosecond science, high-harmonic generation, and many other fields. However, the computing power necessary to complete fully ab initio calculations describing molecules of this size does not exist; this leaves theoretical studies to rely on assumptions and approximations just to calculate the energies of the ground state. Including any sort of dynamics in these calculations is prohibitively complicated, and this makes experimental observations important. Since many organic molecules are ...


An Exploration Of Neutron Detection In Semiconducting Boron Carbide, Nina Hong Apr 2012

An Exploration Of Neutron Detection In Semiconducting Boron Carbide, Nina Hong

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

The 3He supply problem in the U.S. has necessitated the search for alternatives for neutron detection. The neutron detection efficiency is a function of density, atomic composition, neutron absorption cross section, and thickness of the neutron capture material. The isotope 10B is one of only a handful of isotopes with a high neutron absorption cross section—3840 barns for thermal neutrons. So a boron carbide semiconductor represents a viable alternative to 3He. This dissertation provides an evaluation of the performance of semiconducting boron carbide neutron detectors grown by plasma enhance chemical vapor deposition (PECVD) in order ...


Magnetoelectric Interactions Between An Organic Ferroelectric And A Transition Metal Ferromagnet, Abhijit Mardana Jan 2012

Magnetoelectric Interactions Between An Organic Ferroelectric And A Transition Metal Ferromagnet, Abhijit Mardana

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

The interaction between ferromagnetic and ferroelectric films, the magnetoelectric effect, is a fascinating fundamental research area as well as having potential applications in magnetic data storage devices. We have investigated magnetoelectric coupling effects in thin film heterostructures, consists of metallic ferromagnet, cobalt, and the polymer ferroelectric [P(VDF-TrFE) 70:30]. The work described here encompasses changes in ferroelectric polarization with magnetic field as well as changes in the magnetic anisotropy with ferroelectric polarization.

In samples of Co overlayers on P(VDF-TrFE), in which the Co is not constrained by the substrate, the polarization shows a large change on application of ...


Two Dimensional Electron Gas At Oxide Interfaces, Karolina Janicka Dec 2011

Two Dimensional Electron Gas At Oxide Interfaces, Karolina Janicka

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Extraordinary phenomena can occur at the interface between two oxide materials. A spectacular example is a formation of a two-dimensional electron gas (2DEG) at the SrTiO3/LaAlO3 interface. In this dissertation the properties of the 2DEG are investigated from first principles.

The spatial extent of the 2DEG formed at the SrTiO3/LaAlO3 n-type interface is studied. It is shown that the confinement of the 2DEG is controlled by metal induced gap states formed in the band gap of SrTiO3. The confinement width is then determined by the attenuation length of the metal induced gap states ...


First-Principles Studies On Physical And Chemical Properties Of Nanostructures, Menghao Wu Dec 2011

First-Principles Studies On Physical And Chemical Properties Of Nanostructures, Menghao Wu

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

The physical and chemical properties of decorated graphene and graphene ribbons, single-layer III-V systems, three-dimensional carbon and BN foam, and transition-metal-molecular sandwich nanowires have been investigated by first-principle calculations and their potential applications have been predicted. First, it is shown that zigzag graphene nanoribbons (ZGNRs) can be converted into half metal when their edges are decorated by some chemical functional groups, and the half-metalicity is induced by chemical potential difference between two edges when one edge is decorated by electron-donating group like –OH and the other edge is decorated by electron-accepting group like –F, -NH2, -N(CH3)2 ...