Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Ferroelectric Nanomesa Formation From Polymer Langmuir-Blodgett Films, Mengjun Bai, Stephen Ducharme Oct 2004

Ferroelectric Nanomesa Formation From Polymer Langmuir-Blodgett Films, Mengjun Bai, Stephen Ducharme

Stephen Ducharme Publications

We report the fabrication and characterization of nanoscale ferroelectric structures consisting of disk-shaped nanomesas averaging 8.7±0.4 nm in height and 95±22 nm in diameter, and nanowells 9.8±3.3 nm in depth and 128±37 nm in diameter, formed from Langmuir–Blodgett films of vinylidene fluoride copolymers after annealing in the paraelectric phase. The nanomesas retain the ferroelectric properties of the bulk material and so may be suitable for use in high-density nonvolatile random-access memories, acoustic transducer arrays, or infrared imaging arrays. The nanomesa and nanowell patterns may provide useful templates for nanoscale molding or contact-printing.


Determination Of The Optical Dispersion In Ferroelectric Vinylidene Fluoride (70%)/Trifluoroethylene (30%) Copolymer Langmuir-Blodgett Films, Mengjun Bai, A.V. Sorokin, Daniel W. Thompson, Matt Poulsen, Stephen Ducharme, C.M. Herzinger, S. Palto, V.M. Fridkin, S.G. Yudin, V.E. Savchenko, L.K. Gribova Apr 2004

Determination Of The Optical Dispersion In Ferroelectric Vinylidene Fluoride (70%)/Trifluoroethylene (30%) Copolymer Langmuir-Blodgett Films, Mengjun Bai, A.V. Sorokin, Daniel W. Thompson, Matt Poulsen, Stephen Ducharme, C.M. Herzinger, S. Palto, V.M. Fridkin, S.G. Yudin, V.E. Savchenko, L.K. Gribova

Stephen Ducharme Publications

We report measurements of the optical dispersion in ferroelectric Langmuir–Blodgett films of polyvinylidene fluoride (70%)-trifluoroethylene (30%) copolymer, using variable-angle spectroscopic ellipsometry over a wide spectral range from infrared to ultraviolet. Film thickness averaged 1.78±0.07 nm per deposition layer for films ranging from 5 to 125 deposition layers as determined from multi-sample analysis. This deposition rate was consistent with capacitance measurements, yielding a dielectric constant of 9.9±0.4 normal to the film, by quartz microbalance measurements, and by atomic force microscopy.


Mapping Surface Polarization In Thin Films Of The Ferroelectric Polymer P(Vdf-Trfe)., Bradley W. Peterson, Stephen Ducharme, Vladimir M. Fridkin, Timothy J. Reece Jan 2004

Mapping Surface Polarization In Thin Films Of The Ferroelectric Polymer P(Vdf-Trfe)., Bradley W. Peterson, Stephen Ducharme, Vladimir M. Fridkin, Timothy J. Reece

Stephen Ducharme Publications

Pyroelectric Scanning Microscopy (PSM) has been developed to enable mapping of surface polarization in ferroelectric thin films, in particular the copolymer polyvinylidene fluoride trifluororethylene, or P(VDF-TrFE). The Chynoweth method for dynamically measuring pyroelectric current is employed in conjunction with a micropositioning system to construct two-dimensional images of the film polarization. These images have revealed enhancement of the polarization near the edges of the film below the average coercive field, with the center's polarization increasing thereafter to meet the edge value at saturation.


Electron Irradiation Effects On Ferroelectric Copolymer Langmuir-Blodgett Films, Christina M. Othon, Stephen Ducharme Jan 2004

Electron Irradiation Effects On Ferroelectric Copolymer Langmuir-Blodgett Films, Christina M. Othon, Stephen Ducharme

Stephen Ducharme Publications

The effect of irradiation on the ferroelectric properties of Langmuir-Blodgett films of the copolymer poly(vinylidene fluoride-trifluorethelene) is investigating using 1.26 MeV electrons with dosages from 16 to 110 Mrad. Irradiation causes a systematic decrease in the phase transition temperature, coercive field and polarization of these thin films.


Ferroelectricity At Molecular Level, L. M. Blinov, A. V. Bune, Peter A. Dowben, Stephen Ducharme, Vladimir M. Fridkin, S. P. Palto, K. A. Verkhovskaya, G. V. Vizdrik, S. G. Yudin Jan 2004

Ferroelectricity At Molecular Level, L. M. Blinov, A. V. Bune, Peter A. Dowben, Stephen Ducharme, Vladimir M. Fridkin, S. P. Palto, K. A. Verkhovskaya, G. V. Vizdrik, S. G. Yudin

Stephen Ducharme Publications

he synthesis of ultrathin ferroelectric nanostructures by the Langmuir-Blodgett method and their properties are reviewed. It is shown that ferroelectricity exists in one monolayer of the ferroelectric P(VDF-TrFE) copolymer, i.e., at the molecular level. The specific characteristics of switching of ultrathin ferroelectric films are established.