Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Diffractive Imaging Of A Rotational Wavepacket In Nitrogen Molecules With Femtosecond Megaelectronvolt Electron Pulses, Jie Yang, Markus Guehr, Theodore Vecchione, Matthew S. Robinson, Renkai Li, Nick Hartmann, Xiaozhe Shen, Ryan Coffee, Jeff Corbett, Alan Fry, Kelly Gaffney, Tais Gorkhover, Carsten Hast, Keith Jobe, Igor Makasyuk, Alexander Reid, Joseph Robinson, Sharon Vetter, Fenglin Wang, Stephen Weathersby, Charles Yoneda, Martin Centurion, Xijie Wang Apr 2016

Diffractive Imaging Of A Rotational Wavepacket In Nitrogen Molecules With Femtosecond Megaelectronvolt Electron Pulses, Jie Yang, Markus Guehr, Theodore Vecchione, Matthew S. Robinson, Renkai Li, Nick Hartmann, Xiaozhe Shen, Ryan Coffee, Jeff Corbett, Alan Fry, Kelly Gaffney, Tais Gorkhover, Carsten Hast, Keith Jobe, Igor Makasyuk, Alexander Reid, Joseph Robinson, Sharon Vetter, Fenglin Wang, Stephen Weathersby, Charles Yoneda, Martin Centurion, Xijie Wang

Martin Centurion Publications

This work is licensed under a Creative Commons Attribution 4.0 International License.


Ultrafast Imaging Of Isolated Molecules With Electron Diffraction, Martin Centurion Feb 2016

Ultrafast Imaging Of Isolated Molecules With Electron Diffraction, Martin Centurion

Martin Centurion Publications

Recent advances in ultrafast electron diffraction offer the possibility to image isolated molecules with sub-Angstrom spatial resolution in ultrafast time scales. In particular, diffraction from aligned molecules has opened the door to retrieving three-dimensional structures directly from experimental data. In this manuscript we review the progress in ultrafast gas electron diffraction and discuss remaining challenges to achieve a temporal resolution of sub-100 fs, which is needed to observe the nuclear motion in chemical reactions in the gas phase.