Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Physics

Ultrafast Electron Diffraction: Visualizing Dynamic States Of Matter, D. Filipetto, P. Musumed, R. K. Li, B. J. Siwick, M. R. Otto, Martin Centurion, J. P.F. Nunes Jun 2022

Ultrafast Electron Diffraction: Visualizing Dynamic States Of Matter, D. Filipetto, P. Musumed, R. K. Li, B. J. Siwick, M. R. Otto, Martin Centurion, J. P.F. Nunes

Martin Centurion Publications

Since the discovery of electron-wave duality, electron scattering instrumentation has developed into a powerful array of techniques for revealing the atomic structure of matter. Beyond detecting local lattice variations in equilibrium structures with the highest possible spatial resolution, recent research efforts have been directed towards the long sought-after dream of visualizing the dynamic evolution of matter in real-time. The atomic behavior at ultrafast timescales carries critical information on phase transition and chemical reaction dynamics, the coupling of electronic and nuclear degrees of freedom in materials and molecules, the correlation between structure, function and previously hidden metastable or nonequilibrium states of …


Quantum State Tomography Of Molecules By Ultrafast Diffraction, Ming Zhang, Shuqiao Zhang, Yanwei Xiong, Hankai Zhang, Anatoly A. Ischenko, Oriol Vendrell, Xiaolong Dong, Xiangxu Mu, Martin Centurion, Haitan Xu, R. J.Dwayne Miller, Zheng Li Dec 2021

Quantum State Tomography Of Molecules By Ultrafast Diffraction, Ming Zhang, Shuqiao Zhang, Yanwei Xiong, Hankai Zhang, Anatoly A. Ischenko, Oriol Vendrell, Xiaolong Dong, Xiangxu Mu, Martin Centurion, Haitan Xu, R. J.Dwayne Miller, Zheng Li

Martin Centurion Publications

Ultrafast electron diffraction and time-resolved serial crystallography are the basis of the ongoing revolution in capturing at the atomic level of detail the structural dynamics of molecules. However, most experiments capture only the probability density of the nuclear wavepackets to determine the time-dependent molecular structures, while the full quantum state has not been accessed. Here, we introduce a framework for the preparation and ultrafast coherent diffraction from rotational wave packets of molecules, and we establish a new variant of quantum state tomography for ultrafast electron diffraction to characterize the molecular quantum states. The ability to reconstruct the density matrix, which …


Conformer-Specific Photochemistry Imaged In Real Space And Time, E. G. Champenois, D. M. Sanchez, J. Yang, J. P. Figueira Nunes, A. Attar, Martin Centurion, R. Forbes, M. Gühr, K. Hegazy, F. Ji, S. K. Saha, Y. Liu, M. F. Lin, D. Luo, B. Moore, X. Shen, M. R. Ware, Xijie Wang, T. J. Martínez, Thomas J. A. Wolf Oct 2021

Conformer-Specific Photochemistry Imaged In Real Space And Time, E. G. Champenois, D. M. Sanchez, J. Yang, J. P. Figueira Nunes, A. Attar, Martin Centurion, R. Forbes, M. Gühr, K. Hegazy, F. Ji, S. K. Saha, Y. Liu, M. F. Lin, D. Luo, B. Moore, X. Shen, M. R. Ware, Xijie Wang, T. J. Martínez, Thomas J. A. Wolf

Martin Centurion Publications

Conformational isomers (conformers) of molecules play a decisive role in biology and organic chemistry. However, experimental methods for investigating chemical reaction dynamics are typically not conformersensitive. We report on a gas-phase megaelectronvolt ultrafast electron diffraction investigation of a-phellandrene undergoing an electrocyclic ring-opening reaction. We directly imaged the evolution of a specific set of a-phellandrene conformers into the product isomer predicted by the Woodward-Hoffmann rules in real space and time. Our experimental results are in quantitative agreement with nonadiabatic quantum molecular dynamics simulations, which provide considerable detail of how conformation influences the time scale and quantum efficiency of photoinduced ring-opening reactions. …


Structure Retrieval In Liquid-Phase Electron Scattering, Jie Yang, J. Pedro F. Nunes, Kathryn Ledbetter, Elisa Biasin, Martin Centurion, Zhijiang Chen, Amy A. Cordones, Christopher Crissman, Daniel P. Deponte, Siegfried H. Glenzer, Ming Fu Lin, Mianzhen Mo, Conor D. Rankine, Xiaozhe Shen, Thomas J.A. Wolf, Xijie Wang Jan 2021

Structure Retrieval In Liquid-Phase Electron Scattering, Jie Yang, J. Pedro F. Nunes, Kathryn Ledbetter, Elisa Biasin, Martin Centurion, Zhijiang Chen, Amy A. Cordones, Christopher Crissman, Daniel P. Deponte, Siegfried H. Glenzer, Ming Fu Lin, Mianzhen Mo, Conor D. Rankine, Xiaozhe Shen, Thomas J.A. Wolf, Xijie Wang

Martin Centurion Publications

Electron scattering on liquid samples has been enabled recently by the development of ultrathin liquid sheet technologies. The data treatment of liquid-phase electron scattering has been mostly reliant on methodologies developed for gas electron diffraction, in which theoretical inputs and empirical fittings are often needed to account for the atomic form factor and remove the inelastic scattering background. In this work, we present an alternative data treatment method that is able to retrieve the radial distribution of all the charged particle pairs without the need of either theoretical inputs or empirical fittings. The merits of this new method are illustrated …


Photodissociation Of Aqueous I 3 - Observed With Liquid-Phase Ultrafast Mega-Electron-Volt Electron Diffraction, K. Ledbetter, E. Biasin, J. P.F. Nunes, Martin Centurion, K. J. Gaffney, M. Kozina, M. F. Lin, X. Shen, J. Yang, X. J. Wang, T. J. A. Wolf, A. A. Cordones Nov 2020

Photodissociation Of Aqueous I 3 - Observed With Liquid-Phase Ultrafast Mega-Electron-Volt Electron Diffraction, K. Ledbetter, E. Biasin, J. P.F. Nunes, Martin Centurion, K. J. Gaffney, M. Kozina, M. F. Lin, X. Shen, J. Yang, X. J. Wang, T. J. A. Wolf, A. A. Cordones

Martin Centurion Publications

Developing femtosecond resolution methods for directly observing structural dynamics is critical to understanding complex photochemical reaction mechanisms in solution. We have used two recent developments, ultrafast mega-electron-volt electron sources and vacuum compatible sub-micron thick liquid sheet jets, to enable liquid-phase ultrafast electron diffraction (LUED). We have demonstrated the viability of LUED by investigating the photodissociation of tri-iodide initiated with a 400 nm laser pulse. This has enabled the average speed of the bond expansion to be measured during the first 750 fs of dissociation and the geminate recombination to be directly captured on the picosecond time scale.


High-Resolution Movies Of Molecular Rotational Dynamics Captured With Ultrafast Electron Diffraction, Yanwei Xiong, Kyle J. Wilkin, Martin Centurion Oct 2020

High-Resolution Movies Of Molecular Rotational Dynamics Captured With Ultrafast Electron Diffraction, Yanwei Xiong, Kyle J. Wilkin, Martin Centurion

Martin Centurion Publications

Imaging the structure of molecules during a photoinduced reaction is essential for elucidating reaction mechanisms. This requires high spatiotemporal resolution to capture nuclear motions on the femtosecond and subangstrom scale, and a sufficiently high signal level to sample their continuous evolution with high fidelity. Here we show that, using high-repetition-rate ultrafast electron diffraction, we can accurately reconstruct a movie of the coherent rotational motion of laser-aligned nitrogen molecules. We have used a tabletop 90-keV photoelectron gun to simultaneously achieve high temporal resolution of 240 fs full width at half maximum and an electron beam current that is more than an …


Spectroscopic And Structural Probing Of Excited-State Molecular Dynamics With Time-Resolved Photoelectron Spectroscopy And Ultrafast Electron Diffraction, Yusong Liu, Spencer L. Horton, Jie Yang, J. Pedro F. Nunes, Xiaozhe Shen, Thomas J.A. Wolf, Ruaridh Forbes, Chuan Cheng, Bryan Moore, Martin Centurion, Kareem Hegazy, Renkai Li, Ming Fu Lin, Albert Stolow, Paul Hockett, Tamás Rozgonyi, Philipp Marquetand, Xijie Wang, Thomas Weinacht Jun 2020

Spectroscopic And Structural Probing Of Excited-State Molecular Dynamics With Time-Resolved Photoelectron Spectroscopy And Ultrafast Electron Diffraction, Yusong Liu, Spencer L. Horton, Jie Yang, J. Pedro F. Nunes, Xiaozhe Shen, Thomas J.A. Wolf, Ruaridh Forbes, Chuan Cheng, Bryan Moore, Martin Centurion, Kareem Hegazy, Renkai Li, Ming Fu Lin, Albert Stolow, Paul Hockett, Tamás Rozgonyi, Philipp Marquetand, Xijie Wang, Thomas Weinacht

Martin Centurion Publications

Pump-probe measurements aim to capture the motion of electrons and nuclei on their natural timescales (femtoseconds to attoseconds) as chemical and physical transformations take place, effectively making "molecular movies"with short light pulses. However, the quantum dynamics of interest are filtered by the coordinate-dependent matrix elements of the chosen experimental observable. Thus, it is only through a combination of experimental measurements and theoretical calculations that one can gain insight into the internal dynamics. Here, we report on a combination of structural (relativistic ultrafast electron diffraction, or UED) and spectroscopic (time-resolved photoelectron spectroscopy, or TRPES) measurements to follow the coupled electronic and …


Liquid-Phase Mega-Electron-Volt Ultrafast Electron Diffraction, J. P.F. Nunes, K. Ledbetter, M. Lin, M. Kozina, D. P. Deponte, E. Biasin, Martin Centurion, C. J. Crissman, M. Dunning, S. Guillet, K. Jobe, Y. Liu, M. Mo, X. Shen, R. Sublett, S. Weathersby, C. Yoneda, T. J. A. Wolf, Jie Yang, A. A. Cordones, Xijie Wang Mar 2020

Liquid-Phase Mega-Electron-Volt Ultrafast Electron Diffraction, J. P.F. Nunes, K. Ledbetter, M. Lin, M. Kozina, D. P. Deponte, E. Biasin, Martin Centurion, C. J. Crissman, M. Dunning, S. Guillet, K. Jobe, Y. Liu, M. Mo, X. Shen, R. Sublett, S. Weathersby, C. Yoneda, T. J. A. Wolf, Jie Yang, A. A. Cordones, Xijie Wang

Martin Centurion Publications

The conversion of light into usable chemical and mechanical energy is pivotal to several biological and chemical processes, many of which occur in solution. To understand the structure-function relationships mediating these processes, a technique with high spatial and temporal resolutions is required. Here, we report on the design and commissioning of a liquid-phase mega-electron-volt (MeV) ultrafast electron diffraction instrument for the study of structural dynamics in solution. Limitations posed by the shallow penetration depth of electrons and the resulting information loss due to multiple scattering and the technical challenge of delivering liquids to vacuum were overcome through the use of …


Femtosecond Gas-Phase Mega-Electron-Volt Ultrafast Electron Diffraction, Xiaozhe Shen, J. P.F. Nunes, J. Yang, R. K. Jobe, R. K. Li, Ming Fu Lin, B. Moore, M. Niebuhr, S. P. Weathersby, T. J.A. Wolf, C. Yoneda, Markus Guehr, Martin Centurion, X. J. Wang Sep 2019

Femtosecond Gas-Phase Mega-Electron-Volt Ultrafast Electron Diffraction, Xiaozhe Shen, J. P.F. Nunes, J. Yang, R. K. Jobe, R. K. Li, Ming Fu Lin, B. Moore, M. Niebuhr, S. P. Weathersby, T. J.A. Wolf, C. Yoneda, Markus Guehr, Martin Centurion, X. J. Wang

Martin Centurion Publications

The development of ultrafast gas electron diffraction with nonrelativistic electrons has enabled the determination of molecular structures with atomic spatial resolution. It has, however, been challenging to break the picosecond temporal resolution barrier and achieve the goal that has long been envisioned - making space- and-time resolved molecular movies of chemical reaction in the gas-phase. Recently, an ultrafast electron diffraction (UED) apparatus using mega-electron-volt (MeV) electrons was developed at the SLAC National Accelerator Laboratory for imaging ultrafast structural dynamics of molecules in the gas phase. The SLAC gas-phase MeV UED has achieved 65 fs root mean square temporal resolution, 0.63 …


Roadmap On Photonic, Electronic And Atomic Collision Physics: Ii. Electron And Antimatter Interactions, Stefan Schippers, Emma Sokell, Friedrich Aumayr, Hossein Sadeghpour, Kiyoshi Ueda, Igor Bray, Klaus Bartschat, Andrew Murray, Jonathan Tennyson, Alexander Dorn, Masakazu Yamazaki, Masahiko Takahashi, Nigel Mason, Oldřich Novotný, Andreas Wolf, Leon Sanche, Martin Centurion, Yasunori Yamazaki, Gaetana Laricchia, Clifford M. Surko, James Sullivan, Gleb Gribakin, Daniel Wolf Savin, Yuri Ralchenko, Ronnie Hoekstra, Gerry O'Sullivan Aug 2019

Roadmap On Photonic, Electronic And Atomic Collision Physics: Ii. Electron And Antimatter Interactions, Stefan Schippers, Emma Sokell, Friedrich Aumayr, Hossein Sadeghpour, Kiyoshi Ueda, Igor Bray, Klaus Bartschat, Andrew Murray, Jonathan Tennyson, Alexander Dorn, Masakazu Yamazaki, Masahiko Takahashi, Nigel Mason, Oldřich Novotný, Andreas Wolf, Leon Sanche, Martin Centurion, Yasunori Yamazaki, Gaetana Laricchia, Clifford M. Surko, James Sullivan, Gleb Gribakin, Daniel Wolf Savin, Yuri Ralchenko, Ronnie Hoekstra, Gerry O'Sullivan

Martin Centurion Publications

We publish three Roadmaps on photonic, electronic and atomic collision physics in order to celebrate the 60th anniversary of the ICPEAC conference. In Roadmap II we focus on electron and antimatter interactions. Modern theoretical and experimental approaches provide detailed insight into the many body quantum dynamics of leptonic collisions with targets of varying complexity ranging from neutral and charged atoms to large biomolecules and clusters. These developments have been driven by technological progress and by the needs of adjacent areas of science such as astrophysics, plasma physics and radiation biophysics. This Roadmap aims at looking back along the road, explaining …


Diffractive Imaging Of Dissociation And Ground-State Dynamics In A Complex Molecule, Kyle J. Wilkin, Robert M. Parrish, Jie Yang, Thomas J.A. Wolf, J. Pedro F. Nunes, Markus Guehr, Renkai Li, Xiaozhe Shen, Qiang Zheng, Xijie Wang, Todd J. Martinez, Martin Centurion Aug 2019

Diffractive Imaging Of Dissociation And Ground-State Dynamics In A Complex Molecule, Kyle J. Wilkin, Robert M. Parrish, Jie Yang, Thomas J.A. Wolf, J. Pedro F. Nunes, Markus Guehr, Renkai Li, Xiaozhe Shen, Qiang Zheng, Xijie Wang, Todd J. Martinez, Martin Centurion

Martin Centurion Publications

We have investigated the structural dynamics in photoexcited 1,2-diiodotetrafluoroethane molecules (C2F4I2) in the gas phase experimentally using ultrafast electron diffraction and theoretically using FOMO-CASCI excited-state dynamics simulations. The molecules are excited by an ultraviolet femtosecond laser pulse to a state characterized by a transition from the iodine 5p orbital to a mixed 5p||σ hole and CF2• antibonding orbital, which results in the cleavage of one of the carbon-iodine bonds. We have observed, with sub-Angstrom resolution, the motion of the nuclear wave packet of the dissociating iodine atom followed by …


Imaging Cf3I Conical Intersection And Photodissociation Dynamics With Ultrafast Electron Diffraction, Jie Yang, Xiaolei Zhu, Thomas J.A. Wolf, Zheng Li, J. Pedro F. Nunes, Ryan Coffee, James P. Cryan, Markus Gühr, Kareem Hegazy, Tony F. Heinz, Keith Jobe, Renkai Li, Xiaozhe Shen, Theodore Veccione, Stephen Weathersby, Kyle J. Wilkin, Charles Yoneda, Qiang Zheng, Todd J. Martinez, Martin Centurion, Xijie Wang Jul 2018

Imaging Cf3I Conical Intersection And Photodissociation Dynamics With Ultrafast Electron Diffraction, Jie Yang, Xiaolei Zhu, Thomas J.A. Wolf, Zheng Li, J. Pedro F. Nunes, Ryan Coffee, James P. Cryan, Markus Gühr, Kareem Hegazy, Tony F. Heinz, Keith Jobe, Renkai Li, Xiaozhe Shen, Theodore Veccione, Stephen Weathersby, Kyle J. Wilkin, Charles Yoneda, Qiang Zheng, Todd J. Martinez, Martin Centurion, Xijie Wang

Martin Centurion Publications

Conical intersections play a critical role in excited-state dynamics of polyatomic molecules because they govern the reaction pathways of many nonadiabatic processes. However, ultrafast probes have lacked sufficient spatial resolution to image wave-packet trajectories through these intersections directly. Here, we present the simultaneous experimental characterization of one-photon and two-photon excitation channels in isolated CF3I molecules using ultrafast gas-phase electron diffraction. In the two-photon channel, we have mapped out the real-space trajectories of a coherent nuclear wave packet, which bifurcates onto two potential energy surfaces when passing through a conical intersection. In the one-photon channel, we have resolved excitation …


Implementation And Modeling Of A Femtosecond Laser-Activated Streak Camera, Omid Zandi, Kyle J. Wilkin, Martin Centurion Jun 2017

Implementation And Modeling Of A Femtosecond Laser-Activated Streak Camera, Omid Zandi, Kyle J. Wilkin, Martin Centurion

Martin Centurion Publications

8 June 2017) A laser-activated streak camera was built to measure the duration of femtosecond electron pulses. The streak velocity of the device is 1.89 mrad/ps, which corresponds to a sensitivity of 34.9 fs/pixels. The streak camera also measures changes in the relative time of arrival between the laser and electron pulses with a resolution of 70 fs RMS. A full circuit analysis of the structure is presented to describe the streaking field and the general behavior of the device. We have developed a general mathematical model to analyze the streaked images. The model provides an accurate method to extract …


High Current Table-Top Setup For Femtosecond Gas Electron Diffraction, Omid Zandi, Kyle J. Wilkin, Martin Centurion May 2017

High Current Table-Top Setup For Femtosecond Gas Electron Diffraction, Omid Zandi, Kyle J. Wilkin, Martin Centurion

Martin Centurion Publications

We have constructed an experimental setup for gas phase electron diffraction with femtosecond resolution and a high average beam current. While gas electron diffraction has been successful at determining molecular structures, it has been a challenge to reach femtosecond resolution while maintaining sufficient beam current to retrieve structures with high spatial resolution. The main challenges are the Coulomb force that leads to broadening of the electron pulses and the temporal blurring that results from the velocity mismatch between the laser and electron pulses as they traverse the sample. We present here a device that uses pulse compression to overcome the …


Diffractive Imaging Of Coherent Nuclear Motion In Isolated Molecules, Jie Yang, Markus Guehr, Xiaozhe Shen, Renkai Li, Theodore Vecchione, Ryan Coffee, Jeff Corbett, Alan Fry, Nick Hartmann, Carsten Hast, Kareem Hegazy, Keith Jobe, Igor Makasyuk, Joseph Robinson, Matthew S. Robinson, Sharon Vetter, Stephen Weathersby, Charles Yoneda, Xijie Wang, Martin Centurion Oct 2016

Diffractive Imaging Of Coherent Nuclear Motion In Isolated Molecules, Jie Yang, Markus Guehr, Xiaozhe Shen, Renkai Li, Theodore Vecchione, Ryan Coffee, Jeff Corbett, Alan Fry, Nick Hartmann, Carsten Hast, Kareem Hegazy, Keith Jobe, Igor Makasyuk, Joseph Robinson, Matthew S. Robinson, Sharon Vetter, Stephen Weathersby, Charles Yoneda, Xijie Wang, Martin Centurion

Martin Centurion Publications

Observing the motion of the nuclear wave packets during a molecular reaction, in both space and time, is crucial for understanding and controlling the outcome of photoinduced chemical reactions. We have imaged the motion of a vibrational wave packet in isolated iodine molecules using ultrafast electron diffraction with relativistic electrons. The time-varying interatomic distance was measured with a precision 0.07 Å and temporal resolution of 230 fs full width at half maximum. The method is not only sensitive to the position but also the shape of the nuclear wave packet.


Femtosecond Gas Phase Electron Diffraction With Mev Electrons, Jie Yang, Markus Guehr, Theodore Vecchione, Matthew S. Robinson, Renkai Li, Nick Hartmann, Xiaozhe Shen, Ryan Coffee, Jeff Corbett, Alan Fry, Kelly Gaffney, Tais Gorkhover, Carsten Hast, Keith Jobe, Igor Makasyuk, Alexander Reid, Joseph Robinson, Sharon Vetter, Fenglin Wang, Stephen Weathersby, Charles Yoneda, Xijie Wang, Martin Centurion Jun 2016

Femtosecond Gas Phase Electron Diffraction With Mev Electrons, Jie Yang, Markus Guehr, Theodore Vecchione, Matthew S. Robinson, Renkai Li, Nick Hartmann, Xiaozhe Shen, Ryan Coffee, Jeff Corbett, Alan Fry, Kelly Gaffney, Tais Gorkhover, Carsten Hast, Keith Jobe, Igor Makasyuk, Alexander Reid, Joseph Robinson, Sharon Vetter, Fenglin Wang, Stephen Weathersby, Charles Yoneda, Xijie Wang, Martin Centurion

Martin Centurion Publications

We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect …


Diffractive Imaging Of A Rotational Wavepacket In Nitrogen Molecules With Femtosecond Megaelectronvolt Electron Pulses, Jie Yang, Markus Guehr, Theodore Vecchione, Matthew S. Robinson, Renkai Li, Nick Hartmann, Xiaozhe Shen, Ryan Coffee, Jeff Corbett, Alan Fry, Kelly Gaffney, Tais Gorkhover, Carsten Hast, Keith Jobe, Igor Makasyuk, Alexander Reid, Joseph Robinson, Sharon Vetter, Fenglin Wang, Stephen Weathersby, Charles Yoneda, Martin Centurion, Xijie Wang Apr 2016

Diffractive Imaging Of A Rotational Wavepacket In Nitrogen Molecules With Femtosecond Megaelectronvolt Electron Pulses, Jie Yang, Markus Guehr, Theodore Vecchione, Matthew S. Robinson, Renkai Li, Nick Hartmann, Xiaozhe Shen, Ryan Coffee, Jeff Corbett, Alan Fry, Kelly Gaffney, Tais Gorkhover, Carsten Hast, Keith Jobe, Igor Makasyuk, Alexander Reid, Joseph Robinson, Sharon Vetter, Fenglin Wang, Stephen Weathersby, Charles Yoneda, Martin Centurion, Xijie Wang

Martin Centurion Publications

This work is licensed under a Creative Commons Attribution 4.0 International License.


Ultrafast Imaging Of Isolated Molecules With Electron Diffraction, Martin Centurion Feb 2016

Ultrafast Imaging Of Isolated Molecules With Electron Diffraction, Martin Centurion

Martin Centurion Publications

Recent advances in ultrafast electron diffraction offer the possibility to image isolated molecules with sub-Angstrom spatial resolution in ultrafast time scales. In particular, diffraction from aligned molecules has opened the door to retrieving three-dimensional structures directly from experimental data. In this manuscript we review the progress in ultrafast gas electron diffraction and discuss remaining challenges to achieve a temporal resolution of sub-100 fs, which is needed to observe the nuclear motion in chemical reactions in the gas phase.


Imaging Of Alignment And Structural Changes Of Carbon Disulfide Molecules Using Ultrafast Electron Diffraction, Jie Yang, Joshua Beck, Cornelis J. Uiterwaal, Martin Centurion Sep 2015

Imaging Of Alignment And Structural Changes Of Carbon Disulfide Molecules Using Ultrafast Electron Diffraction, Jie Yang, Joshua Beck, Cornelis J. Uiterwaal, Martin Centurion

Martin Centurion Publications

Imaging the structure of molecules in transient-excited states remains a challenge due to the extreme requirements for spatial and temporal resolution. Ultrafast electron diffraction from aligned molecules provides atomic resolution and allows for the retrieval of structural information without the need to rely on theoretical models. Here we use ultrafast electron diffraction from aligned molecules and femtosecond laser mass spectrometry to investigate the dynamics in carbon disulfide following the interaction with an intense femtosecond laser pulse. We observe that the degree of alignment reaches an upper limit at laser intensities below the ionization threshold, and find evidence of structural deformation, …


Gas-Phase Electron Diffraction From Laser-Aligned Molecules, Jie Yang, Martin Centurion Aug 2015

Gas-Phase Electron Diffraction From Laser-Aligned Molecules, Jie Yang, Martin Centurion

Martin Centurion Publications

Electron diffraction is a valuable tool to capture structural information from molecules in the gas phase. However, the information contained in the diffraction patterns is limited due to the random orientation of the molecules. Additional structural information can be retrieved if the molecules are aligned. Molecules can be impulsively aligned with femtosecond laser pulses, producing a transient alignment. The alignment persists only for a time on the order of a picosecond, so a pulsed electron gun is needed to record the diffraction patterns. In this manuscript, we describe the alignment process and show the changes in the diffraction pattern as …


Mega-Electron-Volt Ultrafast Electron Diffraction At Slac National Accelerator Laboratory, Stephen Weathersby, G. Brown, Martin Centurion, T. F. Chase, Ryan Coffee, Jeff Corbett, J. P. Eichner, J. C. Frisch, A. R. Fry, M. Gühr, Nick Hartmann, Carsten Hast, R. Hettel, R. K. Jobe, E. N. Jongewaard, J. R. Lewandowski, R. K. Li, A. M. Lindenberg, Igor Makasyuk, J. E. May, D. Mccormick, M. N. Nguyen, Alexander Reid, Xiaozhe Shen, K. Sokolowski-Tinten, Theodore Vecchione, Sharon Vetter, J. Wu, Jie Yang, H. A. Dürr, Xijie Wang Jan 2015

Mega-Electron-Volt Ultrafast Electron Diffraction At Slac National Accelerator Laboratory, Stephen Weathersby, G. Brown, Martin Centurion, T. F. Chase, Ryan Coffee, Jeff Corbett, J. P. Eichner, J. C. Frisch, A. R. Fry, M. Gühr, Nick Hartmann, Carsten Hast, R. Hettel, R. K. Jobe, E. N. Jongewaard, J. R. Lewandowski, R. K. Li, A. M. Lindenberg, Igor Makasyuk, J. E. May, D. Mccormick, M. N. Nguyen, Alexander Reid, Xiaozhe Shen, K. Sokolowski-Tinten, Theodore Vecchione, Sharon Vetter, J. Wu, Jie Yang, H. A. Dürr, Xijie Wang

Martin Centurion Publications

Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate …


Reconstruction Of Three-Dimensional Molecular Structure From Diffraction Of Laseraligned Molecules, Jie Yang, Varun Makhija, Vinod Kumarappan, Martin Centurion Jan 2014

Reconstruction Of Three-Dimensional Molecular Structure From Diffraction Of Laseraligned Molecules, Jie Yang, Varun Makhija, Vinod Kumarappan, Martin Centurion

Martin Centurion Publications

Diffraction from laser-aligned molecules has been proposed as a method for determining 3-D molecular structures in the gas phase. However, existing structural retrieval algorithms are limited by the imperfect alignment in experiments and the rotational averaging in 1-D alignment. Here, we demonstrate a two-step reconstruction comprising a genetic algorithm that corrects for the imperfect alignment followed by an iterative phase retrieval method in cylindrical coordinates. The algorithm was tested with simulated diffraction patterns. We show that the full 3-D structure of trifluorotoluene, an asymmetric-top molecule, can be reconstructed with atomic resolution.


Tilted Femtosecond Pulses For Velocity Matching In Gas-Phase Ultrafast Electron Diffraction, Ping Zhang, Jie Yang, Martin Centurion Jan 2014

Tilted Femtosecond Pulses For Velocity Matching In Gas-Phase Ultrafast Electron Diffraction, Ping Zhang, Jie Yang, Martin Centurion

Martin Centurion Publications

Recent advances in pulsed electron gun technology have resulted in femtosecond electron pulses becoming available for ultrafast electron diffraction experiments. For experiments investigating chemical dynamics in the gas phase, the resolution is still limited to picosecond time scales due to the velocity mismatch between laser and electron pulses. Tilted laser pulses can be used for velocity matching, but thus far this has not been demonstrated over an extended target in a diffraction setting. We demonstrate an optical configuration to deliver high-intensity laser pulses with a tilted pulse front for velocity matching over the typical length of a gas jet. A …


Reconstruction Of Three-Dimensional Molecular Structure From Diffraction Of Laser-Aligned Molecules, Jie Yang, Varun Makhija, Vinod Kumarappan, Martin Centurion Jan 2014

Reconstruction Of Three-Dimensional Molecular Structure From Diffraction Of Laser-Aligned Molecules, Jie Yang, Varun Makhija, Vinod Kumarappan, Martin Centurion

Martin Centurion Publications

Diffraction from laser-aligned molecules has been proposed as a method for determining 3-D molecular structures in the gas phase. However, existing structural retrieval algorithms are limited by the imperfect alignment in experiments and the rotational averaging in 1-D alignment. Here, we demonstrate a two-step reconstruction comprising a genetic algorithm that corrects for the imperfect alignment followed by an iterative phase retrieval method in cylindrical coordinates. The algorithm was tested with simulated diffraction patterns. We show that the full 3-D structure of trifluorotoluene, an asymmetric-top molecule, can be reconstructed with atomic resolution.


Tilted Femtosecond Pulses For Velocity Matching In Gas-Phase Ultrafast Electron Diffraction, Ping Zhang, Jie Yang, Martin Centurion Jan 2014

Tilted Femtosecond Pulses For Velocity Matching In Gas-Phase Ultrafast Electron Diffraction, Ping Zhang, Jie Yang, Martin Centurion

Martin Centurion Publications

Recent advances in pulsed electron gun technology have resulted in femtosecond electron pulses becoming available for ultrafast electron diffraction experiments. For experiments investigating chemical dynamics in the gas phase, the resolution is still limited to picosecond time scales due to the velocity mismatch between laser and electron pulses. Tilted laser pulses can be used for velocity matching, but thus far this has not been demonstrated over an extended target in a diffraction setting. We demonstrate an optical configuration to deliver high-intensity laser pulses with a tilted pulse front for velocity matching over the typical length of a gas jet. A …