Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 40

Full-Text Articles in Physics

Diffractive Imaging Of Coherent Nuclear Motion In Isolated Molecules, Jie Yang, Markus Guehr, Xiaozhe Shen, Renkai Li, Theodore Vecchione, Ryan Coffee, Jeff Corbett, Alan Fry, Nick Hartmann, Carsten Hast, Kareem Hegazy, Keith Jobe, Igor Makasyuk, Joseph Robinson, Matthew S. Robinson, Sharon Vetter, Stephen Weathersby, Charles Yoneda, Xijie Wang, Martin Centurion Oct 2016

Diffractive Imaging Of Coherent Nuclear Motion In Isolated Molecules, Jie Yang, Markus Guehr, Xiaozhe Shen, Renkai Li, Theodore Vecchione, Ryan Coffee, Jeff Corbett, Alan Fry, Nick Hartmann, Carsten Hast, Kareem Hegazy, Keith Jobe, Igor Makasyuk, Joseph Robinson, Matthew S. Robinson, Sharon Vetter, Stephen Weathersby, Charles Yoneda, Xijie Wang, Martin Centurion

Martin Centurion Publications

Observing the motion of the nuclear wave packets during a molecular reaction, in both space and time, is crucial for understanding and controlling the outcome of photoinduced chemical reactions. We have imaged the motion of a vibrational wave packet in isolated iodine molecules using ultrafast electron diffraction with relativistic electrons. The time-varying interatomic distance was measured with a precision 0.07 Å and temporal resolution of 230 fs full width at half maximum. The method is not only sensitive to the position but also the shape of the nuclear wave packet.


Imaging Population Transfer In Atoms With Ultrafast Electron Pulses, Hua-Chieh Shao, Anthony F. Starace Sep 2016

Imaging Population Transfer In Atoms With Ultrafast Electron Pulses, Hua-Chieh Shao, Anthony F. Starace

Anthony F. Starace Publications

We propose the use of ultrafast electron diffraction (UED) to image a controllable, laser-driven coherent electron population transfer in lithium atoms with currently available femtosecond electron pulses. Our simulations demonstrate the ability of ultrafast electrons to image such an electronic population transfer, thus validating UED as a direct means of investigating electron dynamics. Provided the incident electron pulses have sufficient temporal resolution, the diffraction images are shown to resolve also the relative phases of the target electronic wave functions.


Magnetism In Curved Geometries, Robert Streubel, Peter Fischer, Florian Kronast, Volodymyr P. Kravchuk, Denis D. Sheka, Yuri Gaididei, Oliver G. Schmidt, Denys Makarov Aug 2016

Magnetism In Curved Geometries, Robert Streubel, Peter Fischer, Florian Kronast, Volodymyr P. Kravchuk, Denis D. Sheka, Yuri Gaididei, Oliver G. Schmidt, Denys Makarov

Robert Streubel Papers

Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii-Moriya-like interaction. As …


Hydrogel Microphones For Stealthy Underwater Listening, Yang Gao, Jingfeng Song, Shumin Li, Christian Elowsky, You Zhou, Stephen Ducharme, Yong Mei Chen, Qin Zhou, Li Tan Aug 2016

Hydrogel Microphones For Stealthy Underwater Listening, Yang Gao, Jingfeng Song, Shumin Li, Christian Elowsky, You Zhou, Stephen Ducharme, Yong Mei Chen, Qin Zhou, Li Tan

Stephen Ducharme Publications

Exploring the abundant resources in the ocean requires underwater acoustic detectors with a high-sensitivity reception of low-frequency sound from greater distances and zero reflections. Here we address both challenges by integrating an easily deformable network of metal nanoparticles in a hydrogel matrix for use as a cavity-free microphone. Since metal nanoparticles can be densely implanted as inclusions, and can even be arranged in coherent arrays, this microphone can detect static loads and air breezes from different angles, as well as underwater acoustic signals from 20 Hz to 3 kHz at amplitudes as low as 4 Pa. Unlike dielectric capacitors or …


Multistart Spiral Electron Vortices In Ionization By Circularly Polarized Uv Pulses, Jean Marcel Ngoko Djiokap, Alexei V. Meremianin, N. L. Manakov, S. X. Hu, L. B. Madsen, Anthony F. Starace Jul 2016

Multistart Spiral Electron Vortices In Ionization By Circularly Polarized Uv Pulses, Jean Marcel Ngoko Djiokap, Alexei V. Meremianin, N. L. Manakov, S. X. Hu, L. B. Madsen, Anthony F. Starace

Anthony F. Starace Publications

Multistart spiral vortex patterns are predicted for the electron momentum distributions in the polarization plane following ionization of the helium atom by two time-delayed circularly polarized ultrashort laser pulses. For two ultraviolet (UV) pulses having the same frequency (such that two photons are required for ionization), single-color two-photon interferometry with corotating or counter-rotating time-delayed pulses is found to lead respectively to zero-start or four-start spiral vortex patterns in the ionized electron momentum distributions in the polarization plane. In contrast, two-color one-photon plus two-photon interferometry with time-delayed corotating or counter-rotating UV pulses is found to lead respectively to one …


Spica: Stereographic Projection For Interactive Crystallographic Analysis, Xingzhong Li Jul 2016

Spica: Stereographic Projection For Interactive Crystallographic Analysis, Xingzhong Li

Nebraska Center for Materials and Nanoscience: Faculty Publications

In numerous research fields, especially the applications of electron and X-ray diffraction, stereographic projection represents a powerful tool for researchers. SPICA is a new computer program for stereographic projection in interactive crystallographic analysis, which inherits features from the previous JECP/SP and includes more functions for extensive crystallographic analysis. SPICA provides fully interactive options for users to plot stereograms of crystal directions and crystal planes, traces, and Kikuchi maps for an arbitrary crystal structure; it can be used to explore the orientation relationships between two crystalline phases with a composite stereogram; it is also used to predict the tilt angles of …


Femtosecond Gas Phase Electron Diffraction With Mev Electrons, Jie Yang, Markus Guehr, Theodore Vecchione, Matthew S. Robinson, Renkai Li, Nick Hartmann, Xiaozhe Shen, Ryan Coffee, Jeff Corbett, Alan Fry, Kelly Gaffney, Tais Gorkhover, Carsten Hast, Keith Jobe, Igor Makasyuk, Alexander Reid, Joseph Robinson, Sharon Vetter, Fenglin Wang, Stephen Weathersby, Charles Yoneda, Xijie Wang, Martin Centurion Jun 2016

Femtosecond Gas Phase Electron Diffraction With Mev Electrons, Jie Yang, Markus Guehr, Theodore Vecchione, Matthew S. Robinson, Renkai Li, Nick Hartmann, Xiaozhe Shen, Ryan Coffee, Jeff Corbett, Alan Fry, Kelly Gaffney, Tais Gorkhover, Carsten Hast, Keith Jobe, Igor Makasyuk, Alexander Reid, Joseph Robinson, Sharon Vetter, Fenglin Wang, Stephen Weathersby, Charles Yoneda, Xijie Wang, Martin Centurion

Martin Centurion Publications

We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect …


A Cylindrically Symmetric “Micro-Mott” Electron Polarimeter, Nathan B. Clayburn, Evan M. Brunkow, S. J. Burtwistle, George H. Rutherford, Timothy J. Gay May 2016

A Cylindrically Symmetric “Micro-Mott” Electron Polarimeter, Nathan B. Clayburn, Evan M. Brunkow, S. J. Burtwistle, George H. Rutherford, Timothy J. Gay

Timothy J. Gay Publications

A small, novel, cylindrically symmetric Mott electron polarimeter is described. The effective Sherman function, Seff , or analyzing power, for 20 kV Au target bias with a 1.3 keV energy loss window is 0.16 ± 0.01, where uncertainty in the measurement is due primarily to uncertainty in the incident electron polarization. For an energy loss window of 0.5 keV, Seff reaches its maximum value of 0.24 ± 0.02. The device’s maximum efficiency, I/Io, defined as the detected count rate divided by the incident particle rate, is 3.7 ± 0.2 × 10− …


Charge Collection Kinetics On Ferroelectric Polymer Surface Using Charge Gradient Microscopy, Yoon-Young Choi, Sheng Tong, Stephen Ducharme, Andreas Roelofs, Seungbum Hong May 2016

Charge Collection Kinetics On Ferroelectric Polymer Surface Using Charge Gradient Microscopy, Yoon-Young Choi, Sheng Tong, Stephen Ducharme, Andreas Roelofs, Seungbum Hong

Stephen Ducharme Publications

A charge gradient microscopy (CGM) probe was used to collect surface screening charges on poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films. These charges are naturally formed on unscreened ferroelectric domains in ambient condition. The CGM data were used to map the local electric current originating from the collected surface charges on the poled ferroelectric domains in the P(VDF-TrFE) thin films. Both the direction and amount of the collected current were controlled by changing the polarity and area of the poled domains. The endurance of charge collection by rubbing the CGM tip on the polymer film was limited to 20 scan cycles, after …


Diffractive Imaging Of A Rotational Wavepacket In Nitrogen Molecules With Femtosecond Megaelectronvolt Electron Pulses, Jie Yang, Markus Guehr, Theodore Vecchione, Matthew S. Robinson, Renkai Li, Nick Hartmann, Xiaozhe Shen, Ryan Coffee, Jeff Corbett, Alan Fry, Kelly Gaffney, Tais Gorkhover, Carsten Hast, Keith Jobe, Igor Makasyuk, Alexander Reid, Joseph Robinson, Sharon Vetter, Fenglin Wang, Stephen Weathersby, Charles Yoneda, Martin Centurion, Xijie Wang Apr 2016

Diffractive Imaging Of A Rotational Wavepacket In Nitrogen Molecules With Femtosecond Megaelectronvolt Electron Pulses, Jie Yang, Markus Guehr, Theodore Vecchione, Matthew S. Robinson, Renkai Li, Nick Hartmann, Xiaozhe Shen, Ryan Coffee, Jeff Corbett, Alan Fry, Kelly Gaffney, Tais Gorkhover, Carsten Hast, Keith Jobe, Igor Makasyuk, Alexander Reid, Joseph Robinson, Sharon Vetter, Fenglin Wang, Stephen Weathersby, Charles Yoneda, Martin Centurion, Xijie Wang

Martin Centurion Publications

This work is licensed under a Creative Commons Attribution 4.0 International License.


Fabrication And Characterization Of Layered Transition Metal Dichalcogenides, Peter Kosch, Zhiyong Xiao, Xia Hong Apr 2016

Fabrication And Characterization Of Layered Transition Metal Dichalcogenides, Peter Kosch, Zhiyong Xiao, Xia Hong

UCARE Research Products

The goal of my research was to mechanically exfoliate single to few atomic layer samples of Molybdenum Disulfide (MoS2 ), Tungsten Diselenide (WSe2 ), and Tungsten Disulfide (WS2 ) and characterize these 2D materials by multiple methods. I used Atomic Force Microscopy, Raman Spectroscopy, and Optical Microscopy to accomplish this. In addition, I measured the electrical properties of the exfoliated materials by fabricating a device and taking basic measurements.


Manipulation Of Beams Of Ultra-Relativistic Electrons To Create Femtosecond X-Ray Pulses, Jordan T. O'Neal, Austin Schulte, Rafal Rakowski, Matthias Fuchs Apr 2016

Manipulation Of Beams Of Ultra-Relativistic Electrons To Create Femtosecond X-Ray Pulses, Jordan T. O'Neal, Austin Schulte, Rafal Rakowski, Matthias Fuchs

UCARE Research Products

The research proposed here is expected to result in a crucial component used in a next-generation X-ray source. Typical conventional high-brightness X-ray sources (so-called synchrotron lightsources) are up to 30 football fields in size. Our group uses a novel technique based on ultrahigh-power lasers to develop a similar source that can readily fit into a single, university-scale laboratory. More specifically, the research conducted within this proposal will be concerned with the manipulation of beams of ultra-relativistic electrons, (electrons that move with almost the speed of light) with the goal to focus the particles into an area that is smaller than …


Atomic Photoionization Experiment By Harmonic-Generation Spectroscopy, M. V. Frolov, T. S. Sarantseva, N. L. Manakov, K. D. Fulfer, B. P. Wilson, J. Troß, X. Ren, Erwin D. Poliakoff, A. A. Silaev, N. V. Vvedenskii, Anthony F. Starace, C. A. Trallero-Herrero Mar 2016

Atomic Photoionization Experiment By Harmonic-Generation Spectroscopy, M. V. Frolov, T. S. Sarantseva, N. L. Manakov, K. D. Fulfer, B. P. Wilson, J. Troß, X. Ren, Erwin D. Poliakoff, A. A. Silaev, N. V. Vvedenskii, Anthony F. Starace, C. A. Trallero-Herrero

Anthony F. Starace Publications

Measurements of the high-order-harmonic generation yield of the argon (Ar) atom driven by a strong elliptically polarized laser field are shown to completely determine the field-free differential photoionization cross section of Ar, i.e., the energy dependence of both the angle-integrated photoionization cross section and the angular distribution asymmetry parameter.


New Type Of Al-Based Decagonal Quasicrystal In Al60Cr20Fe10Si10 Alloy, Zhanbing He, Haikun Ma, Hua Li, Xingzhong Li, Xiuliang Ma Mar 2016

New Type Of Al-Based Decagonal Quasicrystal In Al60Cr20Fe10Si10 Alloy, Zhanbing He, Haikun Ma, Hua Li, Xingzhong Li, Xiuliang Ma

Nebraska Center for Materials and Nanoscience: Faculty Publications

A new kind of decagonal quasicrystal (DQC) with a periodicity of 1.23 nm was observed in the as-cast quaternary Al60Cr20Fe10Si10 alloy. The intensity distribution of some spots in the selected-area electron diffraction pattern along the tenfold zone axis was found to be different from other Al-based DQCs. High-angle annular dark-field scanning transmission electron microscopy was adopted to reveal the structural features at an atomic level. Both the tenfold symmetry and symmetry-broken decagonal (D) clusters of 1.91 nm in diameter were found, but with structural characteristics different from the corresponding D clusters in the …


Control Of Threshold Enhancements In Harmonic Generation By Atoms In A Two-Color Laser Field With Orthogonal Polarizations, M. V. Frolov, N. L. Manakov, T. S. Sarantseva, A. A. Silaev, N. V. Vvedenskii, Anthony F. Starace Feb 2016

Control Of Threshold Enhancements In Harmonic Generation By Atoms In A Two-Color Laser Field With Orthogonal Polarizations, M. V. Frolov, N. L. Manakov, T. S. Sarantseva, A. A. Silaev, N. V. Vvedenskii, Anthony F. Starace

Anthony F. Starace Publications

Threshold phenomena (or channel-closing effects) are analyzed in high-order harmonic generation (HHG) by atoms in a two-color laser field with orthogonal linearly polarized components of a fundamental field and its second harmonic. We show that the threshold behavior of HHG rates for the case of a weak second harmonic component is sensitive to the parity of a closing multiphoton ionization channel and the spatial symmetry of the initial bound state of the target atom, while for the case of comparable intensities of both components, suppression of threshold phenomena is observed as the relative phase between the components of a two-color …


Ultrafast Imaging Of Isolated Molecules With Electron Diffraction, Martin Centurion Feb 2016

Ultrafast Imaging Of Isolated Molecules With Electron Diffraction, Martin Centurion

Martin Centurion Publications

Recent advances in ultrafast electron diffraction offer the possibility to image isolated molecules with sub-Angstrom spatial resolution in ultrafast time scales. In particular, diffraction from aligned molecules has opened the door to retrieving three-dimensional structures directly from experimental data. In this manuscript we review the progress in ultrafast gas electron diffraction and discuss remaining challenges to achieve a temporal resolution of sub-100 fs, which is needed to observe the nuclear motion in chemical reactions in the gas phase.


Vortex Circulation And Polarity Patterns In Closely Packed Cap Arrays, Robert Streubel, Florian Kronast, Christopher F. Reiche, Thomas Mühl, Anja U.B. Wolter, Oliver G. Schmidt, Denys Makarov Jan 2016

Vortex Circulation And Polarity Patterns In Closely Packed Cap Arrays, Robert Streubel, Florian Kronast, Christopher F. Reiche, Thomas Mühl, Anja U.B. Wolter, Oliver G. Schmidt, Denys Makarov

Robert Streubel Papers

We studied curvature-driven modifications to the magnetostatic coupling of vortex circulation and polarity in soft-magnetic closely packed cap arrays. A phase diagram for the magnetic remanent/transition states at room temperature as a function of diameter and thickness was assembled. For specimens with vortex remanent state (40 nm-thick Permalloy on 330 nm spherical nanoparticles), both vortex circulation and polarity were visualized. Intercap coupling upon vortex nucleation leads to the formation of vortex circulation patterns in closely packed arrays. The remanent circulation pattern can be tailored choosing the direction of the applied magnetic field with respect to the symmetry axis of the …


On The Ising Character Of The Quantum-Phase Transition In Lihof4, Ralph Skomski Jan 2016

On The Ising Character Of The Quantum-Phase Transition In Lihof4, Ralph Skomski

Ralph Skomski Publications

It is investigated how a transverse magnetic field affects the quantum-mechanical character of LiHoF4, a system generally considered as a textbook example for an Ising-like quantum-phase transition. In small magnetic fields, the low-temperature behavior of the ions is Ising-like, involving the nearly degenerate low-lying Jz = ± 8 doublet. However, as the transverse field increases, there is a substantial admixture of states having | Jz | < 8. Near the quantum-phase-transition field, the system is distinctively non-Ising like, and all Jz eigenstates yield ground-state contributions of comparable magnitude. A classical analog to this mechanism is the micromagnetic single point in magnets with uniaxial anisotropy. Since Ho3+ has …


Structure And Magnetism Of New Rare- Earth-Free Intermetallic Compounds: Fe3+Xco3−Xti2 (0 ≤ X ≤ 3), Balamurugan Balamurugan, Bhaskar Das, Manh Cuong Ngyuen, Xiaoshan Xu, Jie Zhang, Xiaozhe Zhang, Yaohua Liu, Ashfia Huq, Shah R. Valloppilly, Yunlong Jin, Cai-Zhuang Wang, Kai-Ming Ho, David J. Sellmyer Jan 2016

Structure And Magnetism Of New Rare- Earth-Free Intermetallic Compounds: Fe3+Xco3−Xti2 (0 ≤ X ≤ 3), Balamurugan Balamurugan, Bhaskar Das, Manh Cuong Ngyuen, Xiaoshan Xu, Jie Zhang, Xiaozhe Zhang, Yaohua Liu, Ashfia Huq, Shah R. Valloppilly, Yunlong Jin, Cai-Zhuang Wang, Kai-Ming Ho, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

We report the fabrication of a set of new rare-earth-free magnetic compounds, which form the Fe3Co3Ti2-type hexagonal structure with P-6m2 symmetry. Neutron powder diffraction shows a significant Fe/Co anti-site mixing in the Fe3Co3Ti2 structure, which has a strong effect on the magnetocrystalline anisotropy as revealed by first-principle calculations. Increasing substitution of Fe atoms for Co in the Fe3Co3Ti2 lattice leads to the formation of Fe4Co2Ti2 , Fe5CoTi, and Fe6Ti2 with significantly improved …


Event Generator Tunes Obtained From Underlying Event And Multiparton Scattering Measurements, Cms Collaboration, Ekaterina Cms Avdeeva, Kenneth A. Bloom, S. Bose, Daniel Claes, Aaron Dominguez, Caleb Fangmeier, Rebeca Gonzalez Suarez, Rami Kamalieddin, J. Keller, D. Knowlton, Ilya Kravchenko, F. Meier, Jose Monroy, F. Ratnikov, J. E. Siado, Gregory Snow Jan 2016

Event Generator Tunes Obtained From Underlying Event And Multiparton Scattering Measurements, Cms Collaboration, Ekaterina Cms Avdeeva, Kenneth A. Bloom, S. Bose, Daniel Claes, Aaron Dominguez, Caleb Fangmeier, Rebeca Gonzalez Suarez, Rami Kamalieddin, J. Keller, D. Knowlton, Ilya Kravchenko, F. Meier, Jose Monroy, F. Ratnikov, J. E. Siado, Gregory Snow

Kenneth Bloom Publications

New sets of parameters (“tunes”) for the underlying-event (UE) modelling of the PYTHIA8, PYTHIA6 and HERWIG++ MonteCarlo event generators are constructed using different parton distribution functions. Combined fits to CMS UE proton–proton (pp) data at √s = 7 TeV and to UE proton–antiproton (pp) data from the CDF experiment at lower √s, are used to study the UE models and constrain their parameters, providing thereby improved predictions for proton–proton collisions at 13 TeV. In addition, it is investigated whether the values of the parameters obtained from fits to UE observables are consistent with the values determined from fitting observables sensitive …


Finite-Size Scaling Of Flexoelectricity In Langmuir-Blodgett Polymer Thin Films, Shashi Poddar, Keith Foreman, Shireen Adenwalla, Stephen Ducharme Jan 2016

Finite-Size Scaling Of Flexoelectricity In Langmuir-Blodgett Polymer Thin Films, Shashi Poddar, Keith Foreman, Shireen Adenwalla, Stephen Ducharme

Stephen Ducharme Publications

The flexoelectric effect, which is a linear coupling between a strain gradient and electrical polarization, is a fundamental electromechanical property of all materials with potential for use in nanoscale devices, where strain gradients can be quite large. We report a study of the dependence of the flexoelectric response on thickness in ultrathin films of polar and non-polar polymers. The measurements of the flexoelectric response in non-polar polyethylene and the polar relaxor polymer polyvinylidene-co-trifluoroethylene-co-chlorofluoroethylene were made using a bent cantilever method and corrected for the contribution from the electrode oxide. The results show that the value of …


Anomalously Large Chiral Sensitivity In The Dissociative Electron Attachment Of 10-Iodocamphor, J. M. Dreiling, F. W. Lewis, J. D. Mills, Timothy J. Gay Jan 2016

Anomalously Large Chiral Sensitivity In The Dissociative Electron Attachment Of 10-Iodocamphor, J. M. Dreiling, F. W. Lewis, J. D. Mills, Timothy J. Gay

Timothy J. Gay Publications

We have studied dissociative electron attachment (DEA) between low energy (≤ 0.6 eV) longitudinally polarized electrons and gas-phase chiral targets of 3-bromocamphor (C10H15BrO), 3-iodocamphor (C10H15IO), and 10-iodocamphor. The DEA rate depends on the sign of the incident electron helicity for a given target handedness, and it varies with both the atomic number (Z) and location of the heaviest atom in the molecule. While simple dynamic mechanisms can account for the asymmetry dependence on Z, they fail to explain the large asymmetry variation with the heavy atom location.


Electron Diffraction Study Of Cobalt-Rich Hf-Co, Xingzhong Li, Yunlong Jin, Jeffrey E. Shield, Ralph Skomski, David J. Sellmyer Jan 2016

Electron Diffraction Study Of Cobalt-Rich Hf-Co, Xingzhong Li, Yunlong Jin, Jeffrey E. Shield, Ralph Skomski, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Intermetallic compounds having compositions from HfCo4 to HfCo8 were investigated by transmission electron microscopy, selected-area electron diffraction, and energy-dispersive x-ray spectroscopy. A major crystalline phase, closely related to the orthorhombic Zr2Co11 phase in structure, has been observed in the samples with the composition ranges from HfCo6 to HfCo8. The phase, referred to as either Hf2Co11 or HfCo7 phase in the literature, is actually one common phase, having a broad composition range and referred to as μ-phase in the present paper. In addition to the μ-phase, we …


Low-Temperature Fcc To L10 Phase Transformation In Copt(Bi) Nanoparticles, Frank M. Abel, Vasilis Tzitzios, David J. Sellmeyer, George C. Hadjipanayis Jan 2016

Low-Temperature Fcc To L10 Phase Transformation In Copt(Bi) Nanoparticles, Frank M. Abel, Vasilis Tzitzios, David J. Sellmeyer, George C. Hadjipanayis

Nebraska Center for Materials and Nanoscience: Faculty Publications

This work is focused on the effects of Bi substitution on the synthesis of CoPt nanoparticles with the L10 structure using a modified organometallic approach. The structural and magnetic properties of the nanoparticles have been studied and compared directly with those of CoPt nanoparticles synthesized by the same tech- nique but in the absence of Bi substitution. The as-synthesized particles at 330 ◦C have an average size of 11.7 nm and a partially ordered L10 phase with a coercivity of 1 kOe. The coercivity is increased to 9.3 kOe and 12.4 kOe after annealing for 1 hour at 600 …


Evidence For Simultaneous Production Of J/Ψ And ϒ Mesons, V. M. Abazov, Kenneth A. Bloom, Daniel R. Claes, Kayle Devaughan, Aaron Dominguez, Ioannis Katsanos, Sudhir Malik, Gregory Snow, D0 Collaboration Jan 2016

Evidence For Simultaneous Production Of J/Ψ And ϒ Mesons, V. M. Abazov, Kenneth A. Bloom, Daniel R. Claes, Kayle Devaughan, Aaron Dominguez, Ioannis Katsanos, Sudhir Malik, Gregory Snow, D0 Collaboration

Kenneth Bloom Publications

We report evidence for the simultaneous production of J/ψ and ϒ mesons in 8.1 fb1 of data collected at √s = 1.96 TeV by the D0 experiment at the Fermilab p¯p Tevatron Collider. Events with these characteristics are expected to be produced predominantly by gluon-gluon interactions. In this analysis, we extract the effective cross section characterizing the initial parton spatial distribution, σeff = 2.2 ± 0.7(stat) ± 0.9(syst) mb.


Domain Wall Conductivity In Semiconducting Hexagonal Ferroelectric Tbmno3 Thin Films, D. J. Kim, J. G. Connell, S. S. A. Seo, Alexei Gruverman Jan 2016

Domain Wall Conductivity In Semiconducting Hexagonal Ferroelectric Tbmno3 Thin Films, D. J. Kim, J. G. Connell, S. S. A. Seo, Alexei Gruverman

Alexei Gruverman Publications

Although enhanced conductivity of ferroelectric domain boundaries has been found in BiFeO3 and Pb(Zr,Ti)O3 films as well as hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO3 thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO3 films is …


Phase Separation In Lufeo3 Films, Shi Cao, Xiaozhe Zhang, Kishan Sinha, Wenbin Wang, Jian Wang, Peter A. Dowben, Xiaoshan Xu Jan 2016

Phase Separation In Lufeo3 Films, Shi Cao, Xiaozhe Zhang, Kishan Sinha, Wenbin Wang, Jian Wang, Peter A. Dowben, Xiaoshan Xu

Peter Dowben Publications

The structural transition at about 1000°C, from the hexagonal to the orthorhombic phase of LuFeO3, has been investigated in thin films of LuFeO3. Separation of the two structural phases of LuFeO3 occurs on a length scale of micrometer, as visualized in real space using X-ray photoemission electron microscopy. The results are consistent with X-ray diffraction and atomic force microscopy obtained from LuFeO3 thin films undergoing the irreversible structural transition from the hexagonal to the orthorhombic phase of LuFeO3, at elevated temperatures. The sharp phase boundaries between the structural phases are observed to …


Influence Of Steric Hindrance On The Molecular Packing And The Anchoring Of Quinonoid Zwitterions On Gold Surfaces, Minghui Yuan, Iori Tababe, Jean-Marie Bernard- Schaaf, Qin-Yin Shi, Vicki Schlegel, Rachel Schurhammer, Peter A. Dowben, Bernard Doudin, Lucie Routaboul, Pierre Braunstein Jan 2016

Influence Of Steric Hindrance On The Molecular Packing And The Anchoring Of Quinonoid Zwitterions On Gold Surfaces, Minghui Yuan, Iori Tababe, Jean-Marie Bernard- Schaaf, Qin-Yin Shi, Vicki Schlegel, Rachel Schurhammer, Peter A. Dowben, Bernard Doudin, Lucie Routaboul, Pierre Braunstein

Peter Dowben Publications

Driven by the huge potential of engineering the molecular band offset with highly dipolar molecules for improving charge injection into organic electrics, the anchoring of various N-alkyl substituted quinonoid zwitterions of formula C6H2 (···NHR)2 (···O)2 (R = iPr, Cy, CH2CH(Et)CH2CH2CH2CH3,. . .) on gold surfaces is studied. The N–Au interactions result in an orthogonal arrangement of the zwitterions cores with respect to the surface, and stabilize adsorbed compact rows of molecules. IR spectroscopy is used as a straightforward diagnostic tool to validate the presence of …


Momentum Exchange In The Electron Double-Slit Experiment, Herman Batelaan, Eric Jones, Wayne Cheng-Wei Huang, Roger Bach Jan 2016

Momentum Exchange In The Electron Double-Slit Experiment, Herman Batelaan, Eric Jones, Wayne Cheng-Wei Huang, Roger Bach

Herman Batelaan Publications

We provide support for the claim that momentum is conserved for individual events in the electron double slit experiment. The natural consequence is that a physical mechanism is responsible for this momentum exchange, but that even if the fundamental mechanism is known for electron crystal diffraction and the Kapitza–Dirac effect, it is unknown for electron diffraction from nano-fabricated double slits. Work towards a proposed explanation in terms of particle trajectories affected by a vacuum field is discussed. The contentious use of trajectories is discussed within the context of oil droplet analogues of double slit diffraction.


Method For Monitoring Gaas Photocathode Heat Cleaning Temperature, Nathan B. Clayburn, Kenneth Wayne Trantham, M. Dunn, Timothy J. Gay Jan 2016

Method For Monitoring Gaas Photocathode Heat Cleaning Temperature, Nathan B. Clayburn, Kenneth Wayne Trantham, M. Dunn, Timothy J. Gay

Timothy J. Gay Publications

Before a GaAs photocathode can be activated to achieve a negative electron affinity condition, the GaAs crystal must be cleaned. This is most commonly done by ohmic, radiative, or electron bombardment heating. We report a new technique to monitor the temperature of heated GaAs photocathodes by observation with a camera. The method is robust and yields the same temperatures for different GaAs samples heated using different methods in different mounting configurations.