Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 46

Full-Text Articles in Physics

Terahertz Radiation From High-Temperature Superconducting Bscco Mesas Of Various Geometries, Daniel P. Cerkoney Dec 2015

Terahertz Radiation From High-Temperature Superconducting Bscco Mesas Of Various Geometries, Daniel P. Cerkoney

HIM 1990-2015

The purpose of this thesis is to examine the radiation from high-temperature superconducting mesas of Bi2Sr2CaCu2O8+ (BSCCO). This is motivated by the need for coherent sources of continuous wave terahertz (THz) emission capable of radiating practically in the THz frequency band. As BSCCO has been shown to be tunable from 0.5–2.4 THz (i.e., through the entire socalled terahertz gap centered about 1 THz), and has a higher peak operating temperature near 1 THz than most alternative sources, it is a good candidate for imaging and spectroscopy device applications [1]. When a static DC voltage is applied to a BSCCO mesa, …


A Toast! To The International Year Of Light, Michael Bass Jul 2015

A Toast! To The International Year Of Light, Michael Bass

UCF Forum

December 2013, at the United Nations’ 68th General Assembly meeting, the assembled countries could not as usual solve the problems of world conflicts, human slavery, wide-spread famine and the Israeli-Palestinian question. So, it decided to do something it could: It declared that 2015 would be the International Year of Light.


Angular Dependence Of The Emission From The Intrinsic Josephson Junction In Pie-Shaped Wedge Triangular Bscco Mesas, Manuel Morales May 2015

Angular Dependence Of The Emission From The Intrinsic Josephson Junction In Pie-Shaped Wedge Triangular Bscco Mesas, Manuel Morales

HIM 1990-2015

The purpose of this thesis is to determine the radiation patterns from an acute isosceles triangular superconducting mesa modeled by a pie-shaped geometry. The terahertz band lies between the microwave and infrared regions of the electromagnetic spectrum. The terahertz radiation from atomic-scale layered superconducting mesas is caused by the tunneling of electron pairs in the ac-Josephson effect. To determine the terahertz power radiated per unit solid angle of an acute isosceles triangular superconducting mesa, a model was employed in which the shape of the mesa is approximated as a pie-shaped wedge. This model is shown to have an accuracy of …


Broadband Coherent Perfect Absorption In One-Dimensional Optical Systems, Massimo Maximilian Villinger Jan 2015

Broadband Coherent Perfect Absorption In One-Dimensional Optical Systems, Massimo Maximilian Villinger

Electronic Theses and Dissertations

Absorption plays a critical role in a variety of optical applications – sometimes it is desirable to minimize it as in optical fibers and waveguides, or to enhance it as in solar cells and photodetectors. We describe here a new optical scheme that controllably produces high optical absorption over a broad wavelength range (hundreds of nm) in systems that have low intrinsic absorption over the same range. This effect, 'coherent perfect absorption' or CPA, arises from a subtle interplay between interference and absorption of two beams incident on a weakly absorbing medium. In the first part of this study, we …


Synchrotron Based Infrared Microspectroscopy Of Carbonaceous Chondrites., Mehmet Yesiltas Jan 2015

Synchrotron Based Infrared Microspectroscopy Of Carbonaceous Chondrites., Mehmet Yesiltas

Electronic Theses and Dissertations

Relationships between organic molecules and inorganic minerals are investigated in five carbonaceous chondrites, Northwest Africa 852 (CR2), Tagish Lake (C2-ungroupped), Orgueil (CI1), Sutter's Mill (CM), and Murchison (CM2), with micron spatial resolution using synchrotron-based imaging micro-FTIR spectroscopy. Correlations based on absorption strength for various constituents are determined using statistical correlation analysis. Silicate band is found to be positively correlated with stretching modes of aliphatic hydrocarbons in NWA 852 and Tagish Lake. The former is highly correlated with the hydration band in all meteorites. Negative correlation is observed between water+organics and carbonate bands in all meteorites. Two dimensional infrared maps for …


True Linearized Intensity Modulation For Photonic Analog To Digital Conversion Using An Injection-Locked Mode-Locked Laser, Edris Sarailou Jan 2015

True Linearized Intensity Modulation For Photonic Analog To Digital Conversion Using An Injection-Locked Mode-Locked Laser, Edris Sarailou

Electronic Theses and Dissertations

A true linearized interferometric intensity modulator for pulsed light has been proposed and experimentally presented in this thesis. This has been achieved by introducing a mode-locked laser into one of the arms of a Mach-Zehnder interferometer and injection-locking it to the input light (which is pulsed and periodic). By modulating the injection-locked laser, and combining its output light with the light from the other arm of interferometer in quadrature, one can achieve true linearized intensity modulator. This linearity comes from the arcsine phase response of the injection-locked mode-locked laser (as suggested by steady-state solution of Adler's equation) when it is …


Electronic Transport Properties Of Carbon Nanotubes: The Impact Of Atomic Charged Impurities, Ryuichi Tsuchikawa Jan 2015

Electronic Transport Properties Of Carbon Nanotubes: The Impact Of Atomic Charged Impurities, Ryuichi Tsuchikawa

Electronic Theses and Dissertations

Even changing one atom in nanoscale materials is expected to alter their properties due to their small physical sizes. Such sensitivity can be utilized to modify materials' properties from bottom up and is essential for the utility of nanoscale materials. As such, the impact of extrinsic atomic adsorbates was measured on pristine graphene and a network of carbon nanotubes using atomic hydrogen, cesium atoms, and dye molecules. In order to further quantify such an atomic influence, the resistance induced by a single potassium atom on metallic and semiconducting carbon nanotubes was measured for the first time. Carbon nanotubes are sensitive …


Liquid Crystal-Based Biosensors For The Detection Of Bile Acids, Sihui He Jan 2015

Liquid Crystal-Based Biosensors For The Detection Of Bile Acids, Sihui He

Electronic Theses and Dissertations

Bile acids are physiologically important metabolites, which are synthesized in liver as the end products of cholesterol metabolism and then secreted into intestine. They are amphiphilic molecules which play a critical role in the digestion and absorption of fats and fat-soluble vitamins through emulsification. The concentration of bile acids is an indicator for liver function. Individual suffering from liver diseases has a sharp increase in bile acid concentrations. Hence, the concentration level of bile acids has long been used as a biomarker for the early diagnosis of intestinal and liver diseases. Conventional methods of bile acid detection such as chromatography-mass …


Selective Electro-Magnetic Absorbers Based On Metal-Dielectric-Metal Thin-Film Cavities, Janardan Nath Jan 2015

Selective Electro-Magnetic Absorbers Based On Metal-Dielectric-Metal Thin-Film Cavities, Janardan Nath

Electronic Theses and Dissertations

Efficient absorption of light is required for a large number of applications such as thermo-photovoltaics,thermal imaging, bio-sensing, thermal emitters, astronomy, and stealth technology. Strong light absorbers found in nature with high intrinsic losses such as carbon black, metal-black, and carbon nano-tubes etc. are bulky, not design-tunable and are hard to pattern for micro- and nano- devices. We developed thin-film, high performance absorbers in the visible, near-, mid-, long-wave - and far-IR region based on a 3 layer metal-dielectric-metal (MDM) structure. We fabricated a 3-layerMDMabsorber with large band-widths in the visible and near IR spectral range without any lithographic patterning. This …


High Efficiency And Wide Color Gamut Liquid Crystal Displays, Zhenyue Luo Jan 2015

High Efficiency And Wide Color Gamut Liquid Crystal Displays, Zhenyue Luo

Electronic Theses and Dissertations

Liquid crystal display (LCD) has become ubiquitous and indispensable in our daily life. Recently, it faces strong competition from organic light emitting diode (OLED). In order to maintain a strong leader position, LCD camp has an urgent need to enrich the color performance and reduce the power consumption. This dissertation focuses on solving these two emerging and important challenges. In the first part of the dissertation we investigate the quantum dot (QD) technology to improve the both the color gamut and the light efficiency of LCD. QD emits saturated color and grants LCD the capability to reproduce color vivid images. …


Electromechanical Lifting Actuation Of A Mems Cantilever And Nano-Scale Analysis Of Diffusion In Semiconductor Device Dielectrics, Imen Rezadad Jan 2015

Electromechanical Lifting Actuation Of A Mems Cantilever And Nano-Scale Analysis Of Diffusion In Semiconductor Device Dielectrics, Imen Rezadad

Electronic Theses and Dissertations

This dissertation presents experimental and theoretical studies of physical phenomena in micro- and nano-electronic devices. Firstly, a novel and unproven means of electromechanical actuation in a micro-electro-mechanical system (MEMS) cantilever was investigated. In nearly all MEMS devices, electric forces cause suspended components to move toward the substrate. I demonstrated a design with the unusual and potentially very useful property of having a suspended MEMS cantilever lift away from the substrate. The effect was observed by optical micro-videography, by electrical sensing, and it was quantified by optical interferometry. The results agree with predictions of analytic and numerical calculations. One potential application …


Entanglement And Coherence In Classical And Quantum Optics, Kumel Kagalwala Jan 2015

Entanglement And Coherence In Classical And Quantum Optics, Kumel Kagalwala

Electronic Theses and Dissertations

We explore the concepts of coherence and entanglement as they apply to both the classical and quantum natures of light. In the classical domain, we take inspiration from the tools and concepts developed in foundational quantum mechanics and quantum information science to gain a better understanding of classical coherence theory of light with multiple degrees of freedom (DoFs). First, we use polarization and spatial parity DoFs to demonstrate the notion of classical entanglement, and show that Bell's measure can serve as a useful tool in distinguishing between classical optical coherence theory. Second, we establish a methodical yet versatile approach called …


Attosecond Transient Absorption Spectroscopy Of Atoms And Molecules, Yan Cheng Jan 2015

Attosecond Transient Absorption Spectroscopy Of Atoms And Molecules, Yan Cheng

Electronic Theses and Dissertations

One of the most fundamental goals of attosecond science is to observe and to control the dynamic evolutions of electrons in matter. The attosecond transient absorption spectroscopy is a powerful tool to utilize attosecond pulse to measure electron dynamics in quantum systems directly. In this work, isolated single attosecond pulses are used to probe electron dynamics in atoms and to study dynamics in hydrogen molecules using the attosecond transient absorption spectroscopy technique. The target atom/molecule is first pumped to excited states and then probed by a subsequent attosecond extreme ultraviolet (XUV) pulse or by a near infrared (NIR) laser pulse. …


Theoretical And Computational Studies Of The Electronic, Structural, Vibrational, And Thermodynamic Properties Of Transition Metal Nanoparticles, Ghazal Shafai Erfani Jan 2015

Theoretical And Computational Studies Of The Electronic, Structural, Vibrational, And Thermodynamic Properties Of Transition Metal Nanoparticles, Ghazal Shafai Erfani

Electronic Theses and Dissertations

The main objective of this dissertation is to provide better understanding of the atomic configurations, electronic structure, vibrational properties, and thermodynamics of transition metal nanoparticles and evaluate the intrinsic (i.e. size and shape) and extrinsic (i.e. ligands, adsorbates, and support) effects on the aforementioned properties through a simulational approach. The presented research provides insight into better understanding of the morphological changes of the nanoparticles that are brought about by the intrinsic factors as well as the extrinsic ones. The preference of certain ligands to stabilize specific sizes of nanoparticles is investigated. The intrinsic and extrinsic effects on the electronic structure …


Conservation Laws And Electromagnetic Interactions, Veerachart Kajorndejnukul Jan 2015

Conservation Laws And Electromagnetic Interactions, Veerachart Kajorndejnukul

Electronic Theses and Dissertations

Aside from energy, light carries linear and angular momenta that can be transferred to matter. The interaction between light and matter is governed by conservation laws that can manifest themselves as mechanical effects acting on both matter and light waves. This interaction permits remote, precise, and noninvasive manipulation and sensing at microscopic levels. In this dissertation, we demonstrated for the first time a complete set of opto-mechanical effects that are based on nonconservative forces and act at the interface between dielectric media. Without structuring the light field, forward action is provided by the conventional radiation pressure while a backward movement …


The Safe Removal Of Frozen Air From The Annulus Of A Liquid Hydrogen Storage Tank, Angela Krenn Jan 2015

The Safe Removal Of Frozen Air From The Annulus Of A Liquid Hydrogen Storage Tank, Angela Krenn

Electronic Theses and Dissertations

Large Liquid Hydrogen (LH2) storage tanks are vital infrastructure for NASA. Eventually, air may leak into the evacuated and perlite filled annular region of these tanks. Although the vacuum level is monitored in this region, the extremely cold temperature causes all but the helium and neon constituents of air to freeze. A small, often unnoticeable pressure rise is the result. As the leak persists, the quantity of frozen air increases, as does the thermal conductivity of the insulation system. Consequently, a notable increase in commodity boiloff is often the first indicator of an air leak. Severe damage can then result …


Nanoscale Control Of Gap-Plasmon Enhanced Optical Processes, Chatdanai Lumdee Jan 2015

Nanoscale Control Of Gap-Plasmon Enhanced Optical Processes, Chatdanai Lumdee

Electronic Theses and Dissertations

Surface plasmon resonances of metal nanostructures have been studied intensely in recent years. The strong plasmon-mediated electric field enhancement and field confinement well beyond the diffraction limit has been demonstrated to improve the performance of optical devices including ultrasensitive sensors, light emitters, and optical absorbers. A plasmon resonance mode of particular recent interest is the gap plasmon resonance that occurs on closely spaced metallic structures. In contrast to plasmon resonances supported by isolated metal nanostructures, coupled nanostructures provide additional spectral and spatial control over the plasmon resonance response. For example, the resonance frequencies of metal nanoparticle dimers depend strongly on …


Density-Functional Theory+Dynamical Mean-Field Theory Study Of The Magnetic Properties Of Transition-Metal Nanostructures, Alamgir Kabir Jan 2015

Density-Functional Theory+Dynamical Mean-Field Theory Study Of The Magnetic Properties Of Transition-Metal Nanostructures, Alamgir Kabir

Electronic Theses and Dissertations

In this thesis, Density Functional Theory (DFT) and Dynamical Mean-Field Theory (DMFT) approaches are applied to study the magnetic properties of transition metal nanosystems of different sizes and compositions. In particular, in order to take into account dynamical electron correlation effects (time-resolved local charge interactions), we have adopted the DFT+DMFT formalism and made it suitable for application to nanostructures. Preliminary application of this DFT+DMFT approach, using available codes, to study the magnetic properties of small (2 to 5-atom) Fe and FePt clusters provide meaningful results: dynamical effects lead to a reduction of the cluster magnetic moment as compared to that …


Photon Statistics In Disordered Lattices, Hasan Kondakci Jan 2015

Photon Statistics In Disordered Lattices, Hasan Kondakci

Electronic Theses and Dissertations

Propagation of coherent waves through disordered media, whether optical, acoustic, or radio waves, results in a spatially redistributed random intensity pattern known as speckle -- a statistical phenomenon. The subject of this dissertation is the statistics of monochromatic coherent light traversing disordered photonic lattices and its dependence on the disorder class, the level of disorder and the excitation configuration at the input. Throughout the dissertation, two disorder classes are considered, namely, diagonal and off-diagonal disorders. The latter exhibits disorder-immune chiral symmetry -- the appearance of the eigenmodes in skew-symmetric pairs and the corresponding eigenvalues in opposite signs. When a disordered …


Nanoelectronic Devices Using Carbon Nanotubes And Graphene Electrodes: Fabrication And Electronic Transport Investigations, Narae Kang Jan 2015

Nanoelectronic Devices Using Carbon Nanotubes And Graphene Electrodes: Fabrication And Electronic Transport Investigations, Narae Kang

Electronic Theses and Dissertations

Fabrication of high-performance electronic devices using the novel semiconductors is essential for developing future electronics which can be applicable in large-area, flexible and transparent displays, sensors and solar cells. One of the major bottlenecks in the fabrication of high-performance devices is a large interfacial barrier formation at metal/semiconductor interface originated from Schottky barrier and interfacial dipole barrier which causes inefficient charge injection at the interface. Therefore, having a favorable contact at electrode/semiconductor is highly desirable for high-performance devices fabrication. In this dissertation, the fabrication of nanoelectronic devices and investigation of their transport properties using carbon nanotubes (CNTs) and graphene as …


The Subject Librarian Newsletter, Physics, Fall 2015, Patti Mccall Jan 2015

The Subject Librarian Newsletter, Physics, Fall 2015, Patti Mccall

Libraries' Newsletters

No abstract provided.


The Subject Librarian Newsletter, Creol, Fall 2015, Patti Mccall Jan 2015

The Subject Librarian Newsletter, Creol, Fall 2015, Patti Mccall

Libraries' Newsletters

No abstract provided.


Nonlinear Optical Response Of Simple Molecules And Two-Photon Semiconductor Lasers, Matthew Reichert Jan 2015

Nonlinear Optical Response Of Simple Molecules And Two-Photon Semiconductor Lasers, Matthew Reichert

Electronic Theses and Dissertations

This dissertation investigates two long standing issues in nonlinear optics: complete characterization of the ultrafast dynamics of simple molecules, and the potential of a two-photon laser using a bulk semiconductor gain medium. Within the Born-Oppenheimer approximation, nonlinear refraction in molecular liquids and gases can arise from both bound-electronic and nuclear origins. Knowledge of the magnitudes, temporal dynamics, polarization and spectral dependences of each of these mechanisms is important for many applications including filamentation, white-light continuum generation, all-optical switching, and nonlinear spectroscopy. In this work the nonlinear dynamics of molecules are investigated in both liquid and gas phase with the recently …


Parallel Fabrication And Transport Properties Of Carbon Nanotube Single Electron Transistors, Muhammad Islam Jan 2015

Parallel Fabrication And Transport Properties Of Carbon Nanotube Single Electron Transistors, Muhammad Islam

Electronic Theses and Dissertations

Single electron transistors (SET) have attracted significant attention as a potential building block for post CMOS nanoelectronic devices. However, lack of reproducible and parallel fabrication approach and room temperature operation are the two major bottlenecks for practical realization of SET based devices. In this thesis, I demonstrate large scale single electron transistors fabrication techniques using solution processed single wall carbon nanotubes (SWNTs) and studied their electron transport properties. The approach is based on the assembly of individual SWNTs via dielectrophoresis (DEP) at the selected position of the circuit and formation of tunnel barriers on SWNT. Two different techniques: i) metal-SWNT …


Translocation Of A Semiflexible Polymer Through A Nanopore, Ramesh Adhikari Jan 2015

Translocation Of A Semiflexible Polymer Through A Nanopore, Ramesh Adhikari

Electronic Theses and Dissertations

The transport of a biomolecule through a nanopore occurs in many biological functions such as, DNA or RNA transport across nuclear pores and the translocation of proteins across the eukaryotic endoplasmic reticulum. In addition to the biological processes, it has potential applications in technology such as, drug delivery, gene therapy, and single molecule sensing. The DNA translocation through a synthetic nanopore device is considered as the basis for cheap and fast sequencing technology. Motivated by the experimental advances, many theoretical models have been developed. In this thesis, we explore the dynamics of driven translocation of a semiflexible polymer through a …


Mid-Infrared Plasmonics, Farnood Khalilzadeh Rezaie Jan 2015

Mid-Infrared Plasmonics, Farnood Khalilzadeh Rezaie

Electronic Theses and Dissertations

This dissertation reports investigations into materials for, and applications of, infrared surface plasmon polaritons (SPP). SPPs are inhomogeneous electromagnetic waves that are bound to the surface of a conductor. Tight confinement of electromagnetic energy, the primary virtue of SPPs for so-called "plasmonic" applications, requires plasma frequencies for the conductor near the intended infrared operational frequencies. This requires carrier concentrations that are much less than those of usual metals such as gold and silver. I have investigated the optical properties and SPP excitation resonances of two materials having infrared plasma frequencies, namely the semimetal bismuth and the transparent conducting fluorine-doped tin-oxide …


Characterization Of Gold Black And Its Application In Un-Cooled Infrared Detectors, Deep Panjwani Jan 2015

Characterization Of Gold Black And Its Application In Un-Cooled Infrared Detectors, Deep Panjwani

Electronic Theses and Dissertations

Gold black porous coatings were thermally evaporated in the chamber backfilled with inert gas pressure and their optical properties were studied in near-far-IR wavelengths. The porosities of coatings were found to be extremely high around ~ 99%. Different approaches of effective medium theories such as Maxwell-Garnett, Bruggeman, Landau-Lifshitz-Looyenga and Bergman Formalism were utilized to calculate refractive index (n) and extinction coefficient (k). The aging induced changes on electrical and optical properties were studied in regular laboratory conditions using transmission electron microscopy, Fourier transform infrared spectroscopy, and fore-probe electrical measurements. A significant decrease in electrical resistance in as deposited coating was …


Optical Propagation Of Self-Sustaining Wavefronts And Nonlinear Dynamics In Parabolic Multimode Fibers, Matthew Mills Jan 2015

Optical Propagation Of Self-Sustaining Wavefronts And Nonlinear Dynamics In Parabolic Multimode Fibers, Matthew Mills

Electronic Theses and Dissertations

The aim of this thesis is to introduce my work which has generally been focused on optical wavefronts that have the unusual property of resisting commonplace phenomena such as diffraction and dispersion. Interestingly, these special beams are found both in linear and nonlinear situations. For example, in the linear regime, localized spatio-temporal waves which resemble the spherical harmonic symmetries of the hydrogen quantum orbitals can simultaneously negotiate both diffractive and dispersive effects. In the nonlinear regime, dressed optical filaments can be arranged to propagate multi-photon produced plasma channels orders of magnitude longer than expected. The first portion of this dissertation …


Convective Heat Transfer In Quasi-One-Dimensional Magnetic Fluid In Horizontal Field And Temperature Gradients, Jun Huang Jan 2015

Convective Heat Transfer In Quasi-One-Dimensional Magnetic Fluid In Horizontal Field And Temperature Gradients, Jun Huang

Electronic Theses and Dissertations

In this work we studied the convective heat transfer in a magnetic fluid in both zero and applied magnetic fields. The natural convection is observed in a quasi-one dimensional magnetic fluid in a horizontal temperature gradient. The horizontal non-homogeneous magnetic fields were applied across the sample cell either parallel or anti-parallel to the temperature gradient. The temperature profile was measured by eight thermocouples and temperature sensitive paint. The flow velocity field and streamlines were obtained by optical flow method. Calculated Nusselt numbers, Rayleigh number, and Grashof number show that the convective flow is the main heat transfer mechanism in applied …


Observations, Thermochemical Calculations, And Modeling Of Exoplanetary Atmospheres, Jasmina Blecic Jan 2015

Observations, Thermochemical Calculations, And Modeling Of Exoplanetary Atmospheres, Jasmina Blecic

Electronic Theses and Dissertations

This dissertation as a whole aims to provide the means to better understand hot-Jupiter planets through observing, performing thermochemical calculations, and modeling their atmospheres. We used Spitzer multi-wavelength secondary-eclipse observations to characterize planetary atmospheres. We chose targets with high signal-to-noise ratios, as their deep eclipses allow us to detect signatures of spectral features and assess planetary atmospheric structure and composition with greater certainty. Chapter 1 gives a short introduction. Chapter 2 presents the Spitzer secondary-eclipse analysis and atmospheric characterization of WASP-14b. The decrease in flux when a planet passes behind its host star reveals the planet dayside thermal emission, which, …