Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 30

Full-Text Articles in Physics

Characterization Of Online Archives Of Astronomical Imaging Vis-A-Vis Serendipitous Asteroids, And Their Astrometric Properties, Jean Marc Denis Jan 2012

Characterization Of Online Archives Of Astronomical Imaging Vis-A-Vis Serendipitous Asteroids, And Their Astrometric Properties, Jean Marc Denis

Electronic Theses and Dissertations

The identification of known asteroids on existing CCD pictures would allow us to obtain accurate astrometric and photometric asteroid properties. Some asteroids might have ambiguous orbital elements, thus their identification along with their exact positions on multiple picture frames could significantly improve their orbital elements. Furthermore, the possibility of identifying known asteroids on older pictures, sometimes preceding their discovery date, might allow the study of non-gravitational effects like the Yarkovsky effect. Identifying a potential Yarkovsky effect on asteroids is challenging because it is extremely weak. However, this effect cumulates with time, therefore, it is necessary to find astronomical pictures that ...


Role Of Internal Degrees Of Freedom In The Quantum Tunneling Of The Magnetization In Single-Molecule Magnets, Hajrah Quddusi Jan 2012

Role Of Internal Degrees Of Freedom In The Quantum Tunneling Of The Magnetization In Single-Molecule Magnets, Hajrah Quddusi

Electronic Theses and Dissertations

The prominent features of single molecule magnets (SMMs), such as the quantum tunneling of the magnetization (QTM), are conventionally understood through the giant spin approximation (GSA) which considers the molecule as a single rigid spin. This model often requires the inclusion of high order anisotropy terms in the Hamiltonian, a manifestation of admixing of low lying excited states that can be more naturally understood by employing a multi-spin (MS) description i.e. considering the individual spins and the interactions between ions within the molecule. However, solving the MS Hamiltonian for high nuclearity molecules is not feasible due to the enormous ...


Nonlinear Dynamic Modeling, Simulation And Characterization Of The Mesoscale Neuron-Electrode Interface, Vaibhav Thakore Jan 2012

Nonlinear Dynamic Modeling, Simulation And Characterization Of The Mesoscale Neuron-Electrode Interface, Vaibhav Thakore

Electronic Theses and Dissertations

Extracellular neuroelectronic interfacing has important applications in the fields of neural prosthetics, biological computation and whole-cell biosensing for drug screening and toxin detection. While the field of neuroelectronic interfacing holds great promise, the recording of high-fidelity signals from extracellular devices has long suffered from the problem of low signal-to-noise ratios and changes in signal shapes due to the presence of highly dispersive dielectric medium in the neuron-microelectrode cleft. This has made it difficult to correlate the extracellularly recorded signals with the intracellular signals recorded using conventional patch-clamp electrophysiology. For bringing about an improvement in the signalto-noise ratio of the signals ...


Low Voltage Blue Phase Liquid Crystal Displays, Linghui Rao Jan 2012

Low Voltage Blue Phase Liquid Crystal Displays, Linghui Rao

Electronic Theses and Dissertations

From cell phones, laptops, desktops, TVs, to projectors, high reliability LCDs have become indispensable in our daily life. Tremendous progress in liquid crystal displays (LCDs) has been made after decades of extensive research and development in materials, device configurations and manufacturing technology. Nowadays, the most critical issue on viewing angle has been solved using multidomain structures and optical film compensation. Slow response time has been improved to 2-5 ms with low viscosity LC material, overdrive and undershoot voltage, and thin cell gap approach. Moving image blur has been significantly reduced by impulse driving and frame insertion. Contrast ratio in excess ...


Injection-Locked Semiconductor Lasers For Realization Of Novel Rf Photonics Components, Nazanin Hoghooghi Jan 2012

Injection-Locked Semiconductor Lasers For Realization Of Novel Rf Photonics Components, Nazanin Hoghooghi

Electronic Theses and Dissertations

This dissertation details the work has been done on a novel resonant cavity linear interferometric modulator and a direct phase detector with channel filtering capability using injection-locked semiconductor lasers for applications in RF photonics. First, examples of optical systems whose performance can be greatly enhanced by using a linear intensity modulator are presented and existing linearized modulator designs are reviewed. The novel linear interferometric optical intensity modulator based on an injection-locked laser as an arcsine phase modulator is introduced and followed by numerical simulations of the phase and amplitude response of an injection-locked semiconductor laser. The numerical model is then ...


Structure, Stability, Vibrational, Thermodynamic, And Catalytic Properties Of Metal Nanostructures: Size, Shape, Support, And Adsorbate Effects, Farzad Behafarid Jan 2012

Structure, Stability, Vibrational, Thermodynamic, And Catalytic Properties Of Metal Nanostructures: Size, Shape, Support, And Adsorbate Effects, Farzad Behafarid

Electronic Theses and Dissertations

Recent advances in nanoscience and technology have provided the scientific community with new exciting opportunities to rationally design and fabricate materials at the nanometer scale with drastically different properties as compared to their bulk counterparts. A variety of challenges related to nanoparticle (NP) synthesis and materials characterization have been tackled , allowing us to make more homogenous, well defined, size- and shape-selected NPs, and to probe deeper and more comprehensively into their distinct properties. In this dissertation, a variety of phenomena relevant to nanosized materials are investigated, including the thermal stability of NPs and coarsening phenomena in different environments, the experimental ...


Electronic Transport Investigation Of Chemically Derived Reduced Graphene Oxide Sheets, Daeha Joung Jan 2012

Electronic Transport Investigation Of Chemically Derived Reduced Graphene Oxide Sheets, Daeha Joung

Electronic Theses and Dissertations

Reduced graphene oxide (RGO) sheet, a chemically functionalized atomically thin carbon sheet, provides a convenient pathway for producing large quantities of graphene via solution processing. The easy processibility of RGO sheet and its composites offer interesting electronic, chemical and mechanical properties that are currently being explored for advanced electronics and energy based materials. However, a clear understanding of electron transport properties of RGO sheet is lacking which is of great significance for determining its potential application. In this dissertation, I demonstrate fabrication of high-yield solution based graphene field effects transistor (FET) using AC dielectrophoresis (DEP) and investigate the detailed electronic ...


Phonon Modulation By Polarized Lasers For Material Modification, Sen-Yong Chen Jan 2012

Phonon Modulation By Polarized Lasers For Material Modification, Sen-Yong Chen

Electronic Theses and Dissertations

Magnetic resonance imaging (MRI) has become one of the premier non-invasive diagnostic tools, with around 60 million MRI scans applied each year. However, there is a risk of thermal injury due to radiofrequency (RF) induction heating of the tissue and implanted metallic device for the patients with the implanted metallic devices. Especially, MRI of the patients with implanted elongated devices such as pacemakers and deep brain stimulation systems is considered contraindicated. Many efforts, such as determining preferred MRI parameters, modifying magnetic field distribution, designing new structure and exploring new materials, have been made to reduce the induction heating. Improving the ...


Laser Filamentation Interaction With Materials For Spectroscopic Applications, Matthew Weidman Jan 2012

Laser Filamentation Interaction With Materials For Spectroscopic Applications, Matthew Weidman

Electronic Theses and Dissertations

Laser filamentation is a non-diffracting propagation regime consisting of an intense core that is surrounded by an energy reservoir. For laser ablation based spectroscopy techniques such as Laser Induced Breakdown Spectroscopy (LIBS), laser filamentation enables the remote delivery of high power density laser radiation at long distances. This work shows a quasiconstant filament-induced mass ablation along a 35 m propagation distance. The mass ablated is sufficient for the application of laser filamentation as a sampling tool for plasma based spectroscopy techniques. Within the scope of this study, single-shot ablation was compared with multi-shot ablation. The dependence of ablated mass on ...


Radiation Effects On Wide Band Gap Semiconductor Transport Properties, Casey Minna Schwarz Jan 2012

Radiation Effects On Wide Band Gap Semiconductor Transport Properties, Casey Minna Schwarz

Electronic Theses and Dissertations

In this research, the transport properties of ZnO were studied through the use of electron and neutron beam irradiation. Acceptor states are known to form deep in the bandgap of doped ZnO material. By subjecting doped ZnO materials to electron and neutron beams we are able to probe, identify and modify transport characteristics relating to these deep accepter states. The impact of irradiation and temperature on minority carrier diffusion length and lifetime were monitored through the use of the Electron Beam Induced Current (EBIC) method and Cathodoluminescence (CL) spectroscopy. The minority carrier diffusion length, L, was shown to increase as ...


High Pressure Micro-Spectroscopy Of Biological Assemblies And Cells, Sang Hoon Park Jan 2012

High Pressure Micro-Spectroscopy Of Biological Assemblies And Cells, Sang Hoon Park

Electronic Theses and Dissertations

Functional properties of living cells depend on the thermodynamic variables such as temperature and pressure. A unique tool to investigate volume effects on structure and metabolism of the cell and biomolecules is pressure perturbation. We have developed a new setup that enables micro-spectroscopy and optical imaging of individual live cells at variable pressure from 0.1 to 400 MPa. Following characterization of the setup, pressure and temperature effects on the secondary structure of the peptide Poly-L-glutamic acid (PGA) in deuterated water buffer solution were investigated. The amide I band of PGA is sensitive to pressure and temperature, and by spectral ...


Submillisecond-Response Blue Phase Liquid Crystals For Display Applications, Kuan Ming Chen Jan 2012

Submillisecond-Response Blue Phase Liquid Crystals For Display Applications, Kuan Ming Chen

Electronic Theses and Dissertations

With exploding growth of information exchanges between people, display has become indispensable in our daily lives. After decades of intensive research and development in materials and devices, and massive investment in manufacturing technologies, liquid crystal display (LCD) has overcome various obstacles and achieved the performance we need, such as wide viewing angle, high contrast ratio, and high resolution, etc. These excellent performances make LCD prevailed in every perspective. Recently, with the demands of energy conservation, a greener LCD with lower power consumption is desired. In order to achieve this goal, new energy-effective driving methods, such as field sequential color display ...


Image Degradation Due To Surface Scattering In The Presence Of Aberrations, Narak Choi Jan 2012

Image Degradation Due To Surface Scattering In The Presence Of Aberrations, Narak Choi

Electronic Theses and Dissertations

This dissertation focuses on the scattering phenomena by well-polished optical mirror surfaces. Specifically, predicting image degradation by surface scatter from rough mirror surfaces for a two-mirror telescope operating at extremely short wavelengths (9nm~30nm) is performed. To evaluate image quality, surface scatter is predicted from the surface metrology data and the point spread function in the presence of both surface scatter and aberrations is calculated. For predicting the scattering intensity distribution, both numerical and analytic methods are considered. Among the numerous analytic methods, the small perturbation method (classical Rayleigh-Rice surface scatter theory), the Kirchhoff approximation method (classical BeckmanKirchhoff surface scatter ...


Non-Reciprocal Wave Transmission In Integrated Waveguide Array Isolators, Tony Yatming Ho Jan 2012

Non-Reciprocal Wave Transmission In Integrated Waveguide Array Isolators, Tony Yatming Ho

Electronic Theses and Dissertations

Non-reciprocal wave transmission is a phenomenon witnessed in certain photonic devices when the wave propagation dynamics through the device along one direction differs greatly from the dynamics along the counter-propagating direction. Specifically, it refers to significant power transfer occurring in one direction, and greatly reduced power transfer in the opposite direction. The resulting effect is to isolate the directionality of wave propagation, allowing transmission to occur along one direction only. Given the popularity of photonic integrated circuits (PIC), in which all the optical components are fabricated on the same chip so that the entire optical system can be made more ...


First Principles Studies Of Pattern Formations And Reactions On Catalyst Surfaces, Duy Le Jan 2012

First Principles Studies Of Pattern Formations And Reactions On Catalyst Surfaces, Duy Le

Electronic Theses and Dissertations

This dissertation undertakes theoretical research into the adsorption, pattern formation, and reactions of atoms, molecules, and layered materials on catalyst surfaces. These investigations are carried out from first-principles calculations of electronic and geometric structures using density functional theory (DFT) for predictions and simulations at the atomic scale. The results should be useful for further study of the catalytic activities of materials and for engineering functional nanostructures. The first part of the dissertation focuses on systematic first-principles simulations of the energetic pathways of CO oxidation on the Cu2O(100) surface. These simulations show CO to oxidize spontaneously on the O-terminated Cu2O ...


Detecting And Characterizing Exoplanets: The Gj 436 And Hd 149026 Systems, Kevin Stevenson Jan 2012

Detecting And Characterizing Exoplanets: The Gj 436 And Hd 149026 Systems, Kevin Stevenson

Electronic Theses and Dissertations

This dissertation investigates two stellar systems known to contain extrasolar planets. It is comprised of five chapters that are readily divided into three independent but related analyses. Chapter 1 reports on the analysis of low signal-to-noise secondary-eclipse observations of the Neptune-sized exoplanet GJ 436b using the Spitzer Space Telescope in multiple infrared channels. The measured wavelength-dependent eclipse depths provide constraints on the planet’s dayside atmospheric composition and thermal profile. The analysis indicates that GJ 436b’s atmosphere is abundant in carbon monoxide and deficient in methane relative to thermochemical equilibrium models for the predicted hydrogen-dominated atmosphere. Chapter 2 discusses ...


Characterization And Application Of Isolated Attosecond Pulses, Michael Chini Jan 2012

Characterization And Application Of Isolated Attosecond Pulses, Michael Chini

Electronic Theses and Dissertations

Tracking and controlling the dynamic evolution of matter under the influence of external fields is among the most fundamental goals of physics. In the microcosm, the motion of electrons follows the laws of quantum mechanics and evolves on the timescale set by the atomic unit of time, 24 attoseconds. While only a few time-dependent quantum mechanical systems can be solved theoretically, recent advances in the generation, characterization, and application of isolated attosecond pulses and few-cycle femtosecond lasers have given experimentalists the necessary tools for dynamic measurements on these systems. However, pioneering studies in attosecond science have so far been limited ...


An Investigation Of The Relationship Between Visual Effects And Object Identification Using Eye-Tracking, Jonathan Rosch Jan 2012

An Investigation Of The Relationship Between Visual Effects And Object Identification Using Eye-Tracking, Jonathan Rosch

Electronic Theses and Dissertations

The visual content represented on information displays used in training environments prescribe display attributes as brightness, color, contrast, and motion blur, but considerations regarding cognitive processes corresponding to these visual features require further attention in order to optimize the display for training applications. This dissertation describes an empirical study with which information display features, specifically color and motion blur reduction, were investigated to assess their impact in a training scenario involving visual search and threat detection. Presented in this document is a review of the theory and literature describing display technology, its applications to training, and how eye-tracking systems can ...


Random Transformations Of Optical Fields And Applications, Thomas Kohlgraf-Owens Jan 2012

Random Transformations Of Optical Fields And Applications, Thomas Kohlgraf-Owens

Electronic Theses and Dissertations

The interaction of optical waves with material systems often results in complex, seemingly random fields. Because the fluctuations of such fields are typically difficult to analyze, they are regarded as noise to be suppressed. Nevertheless, in many cases the fluctuations of the field result from a linear and deterministic, albeit complicated, interaction between the optical field and the scattering system. As a result, linear systems theory (LST) can be used to frame the scattering problem and highlight situations in which useful information can be extracted from the fluctuations of the scattered field. Three fundamental problems can be posed in LST ...


High-Efficiency Blue Phase Liquid Crystal Displays, Yan Li Jan 2012

High-Efficiency Blue Phase Liquid Crystal Displays, Yan Li

Electronic Theses and Dissertations

Blue phase liquid crystals (BPLCs) have a delicate lattice structure existing between chiral nematic and isotropic phases, with a stable temperature range of about 2 K. But due to short coherent length, these self-assembled nano-structured BPLCs have a fast response time. In the past three decades, the application of BPLC has been rather limited because of its narrow temperature range. In 2002, Kikuchi et al. developed a polymer stabilization method to extend the blue-phase temperature range to more than 60 K. This opens a new gateway for display and photonic applications. In this dissertation, I investigate the material properties of ...


Applications Of Volume Holographic Elements In High Power Fiber Lasers, Apurva Jain Jan 2012

Applications Of Volume Holographic Elements In High Power Fiber Lasers, Apurva Jain

Electronic Theses and Dissertations

The main objective of this thesis is to explore the use of volume holographic elements recorded in photo-thermo-refractive (PTR) glass for power scaling of narrow linewidth diffraction-limited fiber lasers to harness high average power and high brightness beams. Single fiber lasers enable kW level output powers limited by optical damage, thermal effects and non-linear effects. Output powers can be further scaled using large mode area fibers, however, at the cost of beam quality and instabilities due to the presence of higher order modes. The mechanisms limiting the performance of narrow-linewidth large mode area fiber lasers are investigated and solutions using ...


Infraded Surface Plasmon Polaritons On Semiconductor, Semimetal And Conducting Polymer, Monas Shahzad Jan 2012

Infraded Surface Plasmon Polaritons On Semiconductor, Semimetal And Conducting Polymer, Monas Shahzad

Electronic Theses and Dissertations

Conductors with IR (infrared) plasma frequencies are potentially useful hosts of surface plasmon polaritons (SPPs) with subwavelength mode confinement for sensing applications. The underlying aim of this work is to identify such conductors that also have sharp SPP excitation resonances for biosensor applications at infrared (3-11 m) wavelengths, where biological analytes are strongly differentiated by their IR absorption spectra. In this work, various materials were investigated such as a heavily doped semiconductor, a semimetal, a conducting polymer and its composite. Heavily doped silicon was investigated by tuning its plasma frequency to the infrared region by heavily doping. The measured complex ...


Optical Fluid-Based Photonic And Display Devices, Su Xu Jan 2012

Optical Fluid-Based Photonic And Display Devices, Su Xu

Electronic Theses and Dissertations

Conventional solid-state photonic devices exhibit an ultra-high optical performance and durability, but minimal adaptability. Recently, optical fluid-based photonic and display devices are emerging. By dynamically manipulating the optical interface formed by liquids, the optical output can be reconfigured or adaptively tuned in real time. Such devices exhibit some unique characteristics that are not achievable in conventional solid-state photonic devices. Therefore, they open a gateway for new applications, such as image and signal processing, optical communication, sensing, and lab-on-a-chip, etc. Different operation principles of optical fluidbased photonic devices have been proposed, for instance fluidic pressure, electrochemistry, thermal effect, environmentally adaptive hydrogel ...


Lithographic Vertical-Cavity Surface-Emitting Lasers, Guowei Zhao Jan 2012

Lithographic Vertical-Cavity Surface-Emitting Lasers, Guowei Zhao

Electronic Theses and Dissertations

Remarkable improvements in vertical-cavity surface-emitting lasers (VCSELs) have been made by the introduction of mode- and current-confining oxide optical aperture now used commercially. However, the oxide aperture blocks heat flow inside the device, causing a larger thermal resistance, and the internal strain caused by the oxide can degrade device reliability, also the diffusion process used for the oxide formation can limit device uniformity and scalability. Oxide-free lithographic VCSELs are introduced to overcome these device limitations, with both the mode and current confined within the lithographically defined intracavity mesa, scaling and mass production of small size device could be possible. The ...


Vertical Field Switching Blue Phase Liquid Crystals For Field Sequential Color Displays, Hui-Chuan Cheng Jan 2012

Vertical Field Switching Blue Phase Liquid Crystals For Field Sequential Color Displays, Hui-Chuan Cheng

Electronic Theses and Dissertations

Low power consumption is a critical requirement for all liquid crystal display (LCD) devices. A field sequential color (FSC) LCD was proposed by using red (R), green (G) and blue (B) LEDs and removing the lossy component of color filters which only transmits ~30% of the incoming white light. Without color filters, FSC LCDs exhibit a ~3X higher optical efficiency and 3X higher resolution density as compared to the conventional color filters-based LCDs. However, color breakup (CBU) is a most disturbing defect that degrades the image quality in FSC displays. CBU can be observed in stationary or moving images. It ...


Investigation Of Breakdown Power During Electrical Breakdown Of Aligned Array Of Carbon Nanotubes, Udai Bhanu Jan 2012

Investigation Of Breakdown Power During Electrical Breakdown Of Aligned Array Of Carbon Nanotubes, Udai Bhanu

Electronic Theses and Dissertations

Massively parallel arrays of single walled carbon nanotubes (SWNT) have attracted significant research interests because of their ability to (i) average out inhomogeneities of individual SWNTs, (ii) provide larger on currents, and (iii) reduce noise to provide higher cutoff frequency for radio frequency applications. However, the array contains both metallic and semiconducting SWNTs and the presence of metallic nanotube in an aligned array negatively affects the device properties. Therefore, it is essential to selectively remove metallic nanotubes to obtain better transistor properties. It was recently found that although such a selective removal can be effective for a low density array ...


The Effect Of Carbon Nanotube/Organic Semiconductor Interfacial Area On The Performance Of Organic Transistors, Narae Kang Jan 2012

The Effect Of Carbon Nanotube/Organic Semiconductor Interfacial Area On The Performance Of Organic Transistors, Narae Kang

Electronic Theses and Dissertations

Organic field-effect transistors (OFETs) have attracted tremendous attention due to their flexibility, transparency, easy processiblity and low cost of fabrication. High-performance OFETs are required for their potential applications in the organic electronic devices such as flexible display, integrated circuit, and radiofrequency identification tags. One of the major limiting factors in fabricating high-performance OFET is the large interfacial barrier between metal electrodes and OSC which results in low charge injection from the metal electrodes to OSC. In order to overcome the challenge of low charge injection, carbon nanotubes (CNTs) have been suggested as a promising electrode material for organic electronic devices ...


Electronic And Optoelectronic Transport Properties Of Carbon Nanotube/Organic Semiconductor Devices, Biddut Sarker Jan 2012

Electronic And Optoelectronic Transport Properties Of Carbon Nanotube/Organic Semiconductor Devices, Biddut Sarker

Electronic Theses and Dissertations

Organic field effect transistors (OFETs) are of significant research interest due to their promising applications in large area, low-cost electronic devices such as flexible displays, sensor arrays, and radio-frequency identification tags. A major bottleneck in fabricating highperformance OFET is the large interfacial barrier between the metal electrodes and organic semiconductors (OSC) which results in an inefficient charge injection. Carbon nanotubes (CNTs) are considered to be a promising electrode material which can address this challenge. In this dissertation, we demonstrate fabrication of high-performance OFETs using aligned array CNT electrodes and investigate the detailed electronic transport properties of the fabricated devices. The ...


Infrared Tapered Slot Antennas Coupled To Tunnel Diodes, Louis A. Florence Jan 2012

Infrared Tapered Slot Antennas Coupled To Tunnel Diodes, Louis A. Florence

Electronic Theses and Dissertations

Tapered slot antennas (TSAs) have seen considerable application in the millimeter-wave portion of the spectrum. Desirable characteristics of TSAs include symmetric E- and H-plane antenna patterns, and broad non-resonant bandwidths. We investigate extension of TSA operation toward higher frequencies in the thermal infrared (IR), using a metal-oxide-metal diode as the detector. Several different infrared TSA design forms are fabricated using electronbeam lithography and specially developed thin-film processes. The angular antenna patterns of TSA-coupled diodes are measured at 10.6 micrometer wavelength in both E- and H-planes, and are compared to results of finite-element electromagnetic modeling using Ansoft HFSS. Parameter studies ...


Third Order Nonlinearity Of Organic Molecules, Honghua Hu Jan 2012

Third Order Nonlinearity Of Organic Molecules, Honghua Hu

Electronic Theses and Dissertations

The main goal of this dissertation is to investigate the third-order nonlinearity of organic molecules. This topic contains two aspects: two-photon absorption (2PA) and nonlinear refraction (NLR), which are associated with the imaginary and real part of the third-order nonlinearity (χ (3)) of the material, respectively. With the optical properties tailored through meticulous molecular structure engineering, organic molecules are promising candidates to exhibit large third-order nonlinearities. Both linear (absorption, fluorescence, fluorescence excitation anisotropy) and nonlinear (Z-scan, two-photon fluorescence, pump-probe) techniques are described and utilized to fully characterize the spectroscopic properties of organic molecules in solution or solid-state form. These properties ...