Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Polarization Dependence Of High Order Harmonic Generation From Solids In Reflection And Transmission Geometries, Erin L. Crites Jan 2020

Polarization Dependence Of High Order Harmonic Generation From Solids In Reflection And Transmission Geometries, Erin L. Crites

Honors Undergraduate Theses

High harmonic generation (HHG) is a process that occurs when an intense laser interacts with a material and generates new frequencies of light. HHG has many practical applications, namely as a spectroscopy technique and source for high frequency light and attosecond pulses. While HHG has been done extensively in gases, HHG in solids is a relatively new field. Solids are appealing as an HHG medium as they require much simpler equipment and are subsequently much more compact, and thus may have a variety of applications previously inaccessible to gas-phase HHG. However, the generation mechanism of HHG in solids has not …


Inverse Problems In Multiple Light Scattering, John Broky Jan 2013

Inverse Problems In Multiple Light Scattering, John Broky

Electronic Theses and Dissertations

The interaction between coherent waves and material systems with complex optical properties is a complicated, deterministic process. Light that scatters from such media gives rise to random fields with intricate properties. It is common perception that the randomness of these complex fields is undesired and therefore is to be removed, usually through a process of ensemble averaging. However, random fields emerging from light matter interaction contain information about the properties of the medium and a thorough analysis of the scattered light allows solving specific inverse problems. Traditional attempts to solve these kinds of inverse problems tend to rely on statistical …


Near-Field Optical Interactions And Applications, David Haefner Jan 2010

Near-Field Optical Interactions And Applications, David Haefner

Electronic Theses and Dissertations

The propagation symmetry of electromagnetic fields is affected by encounters with material systems. The effects of such interactions, for example, modifications of intensity, phase, polarization, angular spectrum, frequency, etc. can be used to obtain information about the material system. However, the propagation of electromagnetic waves imposes a fundamental limit to the length scales over which the material properties can be observed. In the realm of near-field optics, this limitation is overcome only through a secondary interaction that couples the high-spatial-frequency (but non-propagating) field components to propagating waves that can be detected. The available information depends intrinsically on this secondary interaction, …


Effects Of Polarization And Coherence On The Propagation And The Detection Of Stochastic Electromagnetic Beams, Mohamed Fouad Salem Jan 2007

Effects Of Polarization And Coherence On The Propagation And The Detection Of Stochastic Electromagnetic Beams, Mohamed Fouad Salem

Electronic Theses and Dissertations

Most of the physically realizable optical sources are radiating in a random manner given the random nature of the radiation of a large number of atoms that constitute the source. Besides, a lot of natural and synthetic materials are fluctuating randomly. Hence, the optical fields that one encounters, in most of the applications are fluctuating and must be treated using random or stochastic functions. Within the framework of the scalar-coherence theory, one can describe changes of the properties of any stochastic field such as the spectral density and the spectral degree of coherence on propagation in any linear medium, deterministic …


Probing Random Media With Singular Waves, Chaim Schwartz Jan 2006

Probing Random Media With Singular Waves, Chaim Schwartz

Electronic Theses and Dissertations

In recent years a resurgence of interest in wave singularities (of which optical vortices are a prominent example), light angular momentum and the relations between them has occurred. Many applications in various areas of linear and non-linear optics have been based on studying effects related to angular momentum and optical vortices. This dissertation examines the use of such wave singularities for studying the light propagation in highly inhomogeneous media and the relationship to angular momentum transfer. Angular momentum carried by light can be, in many cases, divided in two terms. The first one relates to the polarization of light and …