Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physics

Structure Difference And Implication To Assembly Morphology Control Of Rous Sarcoma Virus Capsid Protein, John Hastings Jan 2019

Structure Difference And Implication To Assembly Morphology Control Of Rous Sarcoma Virus Capsid Protein, John Hastings

Honors Undergraduate Theses

Rous Sarcoma Virus (RSV) is an avian retrovirus with an enclosing capsid protein (CA) shell. RSV CA is studied due to its similar molecular structure to other retrovirus capsid proteins such as Human Immunodeficiency Virus (HIV). In this project, turbidity assay is used to track the assembly process of RSV CA, while solid state nuclear magnetic resonance (ssNMR) is used to probe the CA structure at a site specific level and investigate the morphology of the spherical structure of the I190V mutated strain of RSV CA. The I190V mutant is a naturally occurring mutation and is able to form into ...


Grating Coupler For Surface Waves Based On Electrical Displacement Currents, Jonathan R. Brescia Jan 2019

Grating Coupler For Surface Waves Based On Electrical Displacement Currents, Jonathan R. Brescia

Honors Undergraduate Theses

Bound electromagnetic surface waves can be excited by free-space waves on a corrugated conduction surface. These electromagnetic surface waves, called surface plasmon polaritons (SPPs), are coupled to a plasma of free charges, which travel together with the wave. We investigated the effect of separating metal corrugations from the smooth metal ground plane with a thin dielectric layer and show that SPPs can be excited via displacement currents. However, the SPP excitation resonances broaden and disappear as the dielectric thickness approaches 1% of the wavelength.


Resonant Anisotropic Emission In Rabbitt Spectroscopy, Bejan M. Ghomashi Jan 2018

Resonant Anisotropic Emission In Rabbitt Spectroscopy, Bejan M. Ghomashi

Honors Undergraduate Theses

A variant of RABBITT pump-probe spectroscopy in which the attosecond pulse train comprises both even and odd harmonics of the fundamental IR probe frequency is explored to measure time-resolved photoelectron emission in systems that exhibit autoionizing states. It is shown that the group delay of both one-photon and two-photon resonant transitions is directly encoded in the energy-resolved photoelectron anisotropy as a function of the pump-probe time-delay. This principle is illustrated for a 1D model with symmetric zero-range potentials that supports both bound states and shape-resonances. The model is studied using both perturbation theory and solving the time-dependent Schodinger equation on ...


Power Distribution Of Terahertz Emission From Hexagonal Bscco Microstrip Antennas, Andrew E. Davis Jan 2017

Power Distribution Of Terahertz Emission From Hexagonal Bscco Microstrip Antennas, Andrew E. Davis

Honors Undergraduate Theses

We analyze the distribution of coherent terahertz radiation from a regular hexagonal microstrip antenna (MSA) made from the high-Tc superconductor Bi2Sr2CaCu2O8+x (BSCCO). We discuss the C6v symmetry of the solutions of the wave equation on a hexagonal domain and distinguish between the closed-form and non-closed-form solutions. The closed-form wavefunctions of the transverse magnetic (TM) electromagnetic cavity modes are presented and formulas for the radiated power arising from the uniform part of the AC Josephson current and from the resonant cavity modes are derived. The wavefunctions and angular distribution of radiation ...


Development Of A Compact Broadband Optical Parametric Oscillator For Ultra-Sensitive Molecular Detection, Sean O. Crystal Jan 2017

Development Of A Compact Broadband Optical Parametric Oscillator For Ultra-Sensitive Molecular Detection, Sean O. Crystal

Honors Undergraduate Theses

Every gas molecule has a unique absorption spectrum that can be captured using optical spectroscopy to identify an unknown sample's composition. Frequency combs systems can provide an extremely broad mid-infrared spectrum that is very useful for molecular detection. A degenerate optical parametric oscillator (OPO) was built to generate the down-converted and shifted frequency comb spectrum. This system utilizes an ultra-short pulse 1.56┬Ám pump laser and a never before used orientation patterned gallium-phosphide crystal. Periodically polled lithium niobate (PPLN), Gallium Arsenide (GaAs) and Gallium Phosphide are all crystals used to accomplish this task. GaP, in comparison to PPLN, has ...


Using Low-Coherence Interferometry To Monitor Cell Invasion In An In-Vitro Model System, Behnaz Davoudi Nasab Jan 2017

Using Low-Coherence Interferometry To Monitor Cell Invasion In An In-Vitro Model System, Behnaz Davoudi Nasab

Honors Undergraduate Theses

In an optically random system, such as naturally occurring and man-made media, light undergoes pronounced multiple scattering. This phenomenon has shown a remarkable potential in characterizing complex materials. In this regime, scattering occurs from each individual center of the scattering and independent scattering events lead to multiple light scattering. This phenomenon is often described as a random walk of photons and can be modeled in terms of a diffusion equation based on the radiative transfer theory. In this thesis, we used optical path-length spectroscopy (OPS), which is an experimental method to obtain the path-length probability density of the propagating light ...


Temperature Dependence Of Dynamical Spin Injection In A Superconducting Niobium Thin Film, Tyler S. Townsend Jan 2017

Temperature Dependence Of Dynamical Spin Injection In A Superconducting Niobium Thin Film, Tyler S. Townsend

Honors Undergraduate Theses

Spintronics is a research field that focuses on the manipulation of the quantum mechanical spin of charge carriers in solid state materials for future technological applications. Creating large spin currents with large relaxation times is sought after in the field of spintronics which may be aided by combining spintronics with superconductivity. This thesis provides a phenomological study of the effective change in ferromagnetic resonance linewidth, by dynamical spin injection into a permalloy-copper-niobium tri-layer in the superconducting state. The ferromagetic resonance linewidth was measured from 2-14 K. It was observed that there was a change in the behavior of the resonance ...


An Improved Tight-Binding Model For Phosphorene, Kursti Delello Jan 2016

An Improved Tight-Binding Model For Phosphorene, Kursti Delello

Honors Undergraduate Theses

The intent of this thesis is to improve upon previously proposed tight-binding models for one dimensional black phosphorus, or phosphorene. Previous models offer only a qualitative analysis of the band structure of phosphorene, and fail to fully realize critical elements in the electronic band structure necessary for transport calculations. In this work we propose an improved tight-binding model for phosphorene by including up to eight nearest-neighbor interactions. The efficacy of the model is verified by comparison with DFT-HSE06 calculations, and the anisotropy of the effective masses in the armchair and zigzag directions is considered.


The Effect Of Impurities On The Superconductivity Of Bscco-2212, John Vastola Jan 2016

The Effect Of Impurities On The Superconductivity Of Bscco-2212, John Vastola

Honors Undergraduate Theses

BSCCO-2212 is a high-temperature cuprate superconductor whose microscopic behavior is currently poorly understood. In particular, it is unclear whether its order parameter is consistent with s-wave or d-wave symmetry. It has been suggested that its order parameter might take one of several forms that are consistent with d-wave behavior. We present some calculations using the many-body theory approach to superconductivity that suggest that such order parameters would lead to a suppression of the critical temperature in the presence of impurities. Because some experiments have suggested the critical temperature of BSCCO-2212 is relatively independent of the concentration of impurities, this lends ...


Plasma Temperature Measurements In The Context Of Spectral Interference, Brandon Seesahai Jan 2016

Plasma Temperature Measurements In The Context Of Spectral Interference, Brandon Seesahai

Honors Undergraduate Theses

The path explored in this thesis is testing a plasma temperature measurement approach that accounts for interference in a spectrum. The Atomic Emission Spectroscopy (AES) technique used is called Laser Induced Breakdown Spectroscopy (LIBS) and involves focusing a laser pulse to a high irradiance onto a sample to induced a plasma. Spectrally analyzing the plasma light provides a "finger print" or spectrum of the sample. Unfortunately, spectral line broadening is a type of interference encountered in a LIBS spectrum because it blends possible ionic or atomic transitions that occur in plasma. To make use of the information or transitions not ...


Coherent Beam Combining Of Ultrashort Laser Pulses, Ahmad Azim Jan 2016

Coherent Beam Combining Of Ultrashort Laser Pulses, Ahmad Azim

Honors Undergraduate Theses

Ultrashort pulsed lasers have become critical to understanding light-matter interactions in new regimes such as generation of attosecond pulses, laser filamentation, and intense relativistic processes. Development of more powerful and energetic ultrafast lasers is required for advancing these fields of study. Several petawatt class systems now exist with more in development to further scale peak power and extend the frontier of ultrafast laser technology. Another relevant solution to the scaling of energy and power of ultrashort pulses is coherent beam combining (CBC). CBC is useful for not only scaling of laser parameters but also to mitigate parasitic nonlinear processes associated ...