Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 22 of 22

Full-Text Articles in Physics

Contributions Of Vibrational Spectroscopy To Virology: A Review, Iqra Chaudhary, Naomi Jackson, Denise Denning, Luke O'Neill, Hugh Byrne May 2022

Contributions Of Vibrational Spectroscopy To Virology: A Review, Iqra Chaudhary, Naomi Jackson, Denise Denning, Luke O'Neill, Hugh Byrne

Articles

Vibrational spectroscopic techniques, both infrared absorption and Raman scattering, are high precision, label free analytical techniques which have found applications in fields as diverse as analytical chemistry, pharmacology, forensics and archeometrics and, in recent times, have attracted increasing attention for biomedical applications. As analytical techniques, they have been applied to the characterisation of viruses as early as the 1970s, and, in the context of the coronavirus disease 2019 (COVID-19) pandemic, have been explored in response to the World Health Organisation as novel methodologies to aid in the global efforts to implement and improve rapid screening of viral infection. This review …


Combining Pharmacokinetics And Vibrational Spectroscopy: Mcr-Als Hard-And-Soft Modelling Of Drug Uptake In Vitro Using Tailored Kinetic Constraints, David Perez-Guaita, Guillermo Quintas, Zeineb Farhane, Roma Tauler, Hugh Byrne May 2022

Combining Pharmacokinetics And Vibrational Spectroscopy: Mcr-Als Hard-And-Soft Modelling Of Drug Uptake In Vitro Using Tailored Kinetic Constraints, David Perez-Guaita, Guillermo Quintas, Zeineb Farhane, Roma Tauler, Hugh Byrne

Articles

Raman microspectroscopy is a label-free technique which is very suited for the investigation of pharmacokinetics of cellular uptake, mechanisms of interaction, and efficacies of drugs in vitro. However, the complexity of the spectra makes the identification of spectral patterns associated with the drug and subsequent cellular responses difficult. Indeed, multivariate methods that relate spectral features to the inoculation time do not normally take into account the kinetics involved, and important theoretical information which could assist in the elucidation of the relevant spectral signatures is excluded. Here, we propose the integration of kinetic equations in the modelling of drug uptake and …


Monitoring Stem Cell Differentiation Using Raman Microspectroscopy: Chondrogenic Differentiation, Towards Cartilage Formation, Francesca Ravera, Esen Efeoglu, Hugh Byrne Jan 2021

Monitoring Stem Cell Differentiation Using Raman Microspectroscopy: Chondrogenic Differentiation, Towards Cartilage Formation, Francesca Ravera, Esen Efeoglu, Hugh Byrne

Articles

Mesenchymal Stem Cells (MSCs) have the ability to differentiate into chondrocytes, the only cellular components of cartilage and are therefore ideal candidates for cartilage and tissue repair technologies. Chondrocytes are surrounded by cartilage-like extracellular matrix (ECM), a complex network rich in glycosaminoglycans, proteoglycans, and collagen, which, together with a multitude of intracellular signalling molecules, trigger the chondrogenesis and allow the chondroprogenitor to acquire the spherical morphology of the chondrocytes. However, although the mechanisms of the differentiation of MSCs have been extensively explored, it has been difficult to provide a holistic picture of the process, in situ. Raman Micro Spectroscopy (RMS) …


Multicomponent Analysis Using A Confocal Raman Microscope, Zhengyuan Tang, Sinead J. Barton, Thomas E. Ward, John P. Lowry, Michelle M. Doran, Hugh Byrne, Bryan M. Hennelly Jun 2018

Multicomponent Analysis Using A Confocal Raman Microscope, Zhengyuan Tang, Sinead J. Barton, Thomas E. Ward, John P. Lowry, Michelle M. Doran, Hugh Byrne, Bryan M. Hennelly

Articles

Measuring the concentration of multiple chemical components in a low volume aqueous mixture by Raman spectroscopy has received significant interest in the literature. All of the contributions to date focus on the design of optical systems that facilitate the recording of spectra with high signal-to-noise ratio, by collecting as many Raman scattered photons as possible. In this study, the confocal Raman microscope set-up is investigated for multicomponent analysis. Partial Least Squares Regression is used to quantify physiologically relevant aqueous mixtures of glucose, lactic acid, and urea. The predicted error is 17.81 mg/dL for glucose, 10.6 mg/dL for lactic acid and …


Raman Spectral Analysis For Rapid Screening Of Dengue Infection, Tahir Mahmood, Haq Nawaz, A. Ditta, M.I. Majeed, M.A. Hanif, N. Rashid, H.N. Bhatti, H.F. Nargis, M. Saleem, Franck Bonnier, Hugh Byrne May 2018

Raman Spectral Analysis For Rapid Screening Of Dengue Infection, Tahir Mahmood, Haq Nawaz, A. Ditta, M.I. Majeed, M.A. Hanif, N. Rashid, H.N. Bhatti, H.F. Nargis, M. Saleem, Franck Bonnier, Hugh Byrne

Articles

Infection with the dengue virus is currently clinically detected according to different biomarkers in human blood plasma, commonly measured by enzyme linked immunosorbent assays, including non-structural proteins (Ns1), immunoglobulin M (IgM) and immunoglobulin G (IgG). However, there is little or no mutual correlation between the biomarkers, as demonstrated in this study by a comparison of their levels in samples from 17 patients. As an alternative, the label free, rapid screening technique, Raman spectroscopy has been used for the characterisation/diagnosis of healthy and dengue infected human blood plasma samples. In dengue positive samples, changes in specific Raman spectral bands associated with …


Industrial Grade 2d Molybdenum Disulphide (Mos2): An In-Vitro Exploration Of The Impact On Cellular Uptake, Cytotoxicity, And Inflammation, Caroline Moore, Hugh Byrne, Jonathan N. Coleman, Yuri Volkov, Jennifer Mcintyre Jun 2017

Industrial Grade 2d Molybdenum Disulphide (Mos2): An In-Vitro Exploration Of The Impact On Cellular Uptake, Cytotoxicity, And Inflammation, Caroline Moore, Hugh Byrne, Jonathan N. Coleman, Yuri Volkov, Jennifer Mcintyre

Articles

The recent surge in graphene research, since its liquid phase monolayer isolation and characterization in 2004, has led to advancements which are accelerating the exploration of alternative 2D materials such as molybdenum disulphide (MoS2), whose unique physico-chemical properties can be exploited in applications ranging from cutting edge electronic devices to nanomedicine. However, to assess any potential impact on human health and the environment, the need to understand the bio-interaction of MoS2 at a cellular and sub-cellular level is critical. Notably, it is important to assess such potential impacts of materials which are produced by large scale production techniques, rather than …


In Vitro Monitoring Of Time And Dose Dependent Cytotoxicity Of Aminated Nanoparticles Using Raman Spectroscopy, Esen Efeoglu, Alan Casey, Hugh Byrne Jul 2016

In Vitro Monitoring Of Time And Dose Dependent Cytotoxicity Of Aminated Nanoparticles Using Raman Spectroscopy, Esen Efeoglu, Alan Casey, Hugh Byrne

Articles

No abstract provided.


Spectroscopic Studies Of Anthracyclines: Structural Characterization And In Vitro Tracking, Zeineb Farhane, Hugh Byrne, Malgorzata Baranska Jul 2016

Spectroscopic Studies Of Anthracyclines: Structural Characterization And In Vitro Tracking, Zeineb Farhane, Hugh Byrne, Malgorzata Baranska

Articles

A broad spectroscopic characterization, using ultraviolet-visible (UV-vis) and Fourier transform infrared absorption as well as Raman scattering, of two commonly used anthracyclines antibiotics (DOX) daunorubicin (DNR), their epimers (EDOX, EDNR) and ten selected analogs is presented. The paper serves as a comprehensive spectral library of UV-vis, IR and Raman spectra of anthracyclines in the solid state and in solution. The particular advantage of Raman spectroscopy for the measurement and analysis of individual antibiotics is demonstrated. Raman spectroscopy can be used to monitor the in vitro uptake and distribution of the drug in cells, using both 488 nm and 785 nm …


A Comparison Of Catabolic Pathways Induced In Primary Macrophages By Pristine Single Walled Carbon Nanotubes And Pristine Graphene, Caroline More, Jennifer Mcintyre, Luke O'Neill, Hugh Byrne Jun 2016

A Comparison Of Catabolic Pathways Induced In Primary Macrophages By Pristine Single Walled Carbon Nanotubes And Pristine Graphene, Caroline More, Jennifer Mcintyre, Luke O'Neill, Hugh Byrne

Articles

Understanding the correlation between the physico-chemical properties of carbonaceous nanomaterials and how these properties impact on cells and subcelluar mechanisms is critical to their risk assessment and safe translation into newly engineered devices. Here the toxicity, uptake and catabolic response of primary human macrophages to pristine graphene (PG) and pristine single walled carbon nanotubes (pSWCNT) are explored, compared and contrasted. The nanomaterial toxicity was assessed using three complementary techniques (live-dead assay, real time impedance technique and confocal microscopic analysis), all of which indicated no signs of acute cytotoxicity in response to PG or pSWCNT. Transmission electron microscopy (TEM) demonstrated that …


Evaluation Of Cytotoxicity Profile And Intracellular Localisation Of Doxorubicin-Loaded Chitosan Nanoparticles, Gabriele Dadalt Souto, Zeineb Farhane, Esen Efeoglu, Alan Casey, Jennifer Mcintyre, Hugh Byrne Apr 2016

Evaluation Of Cytotoxicity Profile And Intracellular Localisation Of Doxorubicin-Loaded Chitosan Nanoparticles, Gabriele Dadalt Souto, Zeineb Farhane, Esen Efeoglu, Alan Casey, Jennifer Mcintyre, Hugh Byrne

Articles

In the emerging field of nanomedicine, targeted delivery of nanoparticle encapsulated active pharmaceutical ingredients (API) is seen as a potential significant development, promising improved pharmacokinetics and reduced side effects. In this context, understanding the cellular uptake of the nanoparticles and subsequent subcellular distribution of the API is of critical importance. Doxorubicin (DOX) was encapsulated within chitosan nanoparticles to investigate its intracellular delivery in A549 cells in vitro. Unloaded (CS-TPP) and doxorubicin-loaded (DOX-CS-TPP) chitosan nanoparticles were characterised for size (473±41 nm), polydispersity index (0.3±0.2), zeta potential (34±4 mV), drug content (76±7 µM) and encapsulation efficiency (95±1%). The cytotoxic response to …


Spectral Pre And Post Processing For Infrared And Raman Spectroscopy Of Biological Tissues And Cells, Hugh Byrne, Peter Knief, Mark Keating, Franck Bonnier Mar 2016

Spectral Pre And Post Processing For Infrared And Raman Spectroscopy Of Biological Tissues And Cells, Hugh Byrne, Peter Knief, Mark Keating, Franck Bonnier

Articles

Vibrational Spectroscopy, both infrared absorption and Raman spectroscopy, have attracted increasing attention for biomedical applications, from in vivo and ex vivo disease diagnostics and screening, to in vitro screening of therapeutics. There remain, however, many challenges related to the accuracy of analysis of physically and chemically inhomogeneous samples, across heterogeneous sample sets. Data preprocessing is required to deal with variations in instrumental responses and intrinsic spectral backgrounds and distortions in order to extract reliable spectral data. Data postprocessing is required to extract the most reliable information from the sample sets, based on often very subtle changes in spectra associated with …


Acellular Reactivity Of Polymeric Dendrimer Nanoparticles As An Indicator Of Oxidative Stress In Vitro, Marcus Maher, Humza Khalid, Hugh Byrne Feb 2016

Acellular Reactivity Of Polymeric Dendrimer Nanoparticles As An Indicator Of Oxidative Stress In Vitro, Marcus Maher, Humza Khalid, Hugh Byrne

Articles

The need for rapid and cost effective pre-screening protocols of the toxicological response of the vast array of emerging nanoparticle types is apparent and the emerging consensus on the paradigm of oxidative stress by generation of intracellular reactive oxygen species as a primary source of the toxic response suggests the development of acellular assays to screen for nanoparticle surface reactivity. This study explores the potential of the monoamine oxidase A (MAO-A) enzyme based assay with polymeric dendrimers as cofactors and serotonin as substrate, which generates H2O2, quantified by the conversion of the Carboxy-H2DCFDA dye …


Raman Spectroscopic Analysis Of Oral Squamous Cell Carcinoma And Oral Dysplasia In The High-Wavenumber Region, Hugh Byrne, Luis Felipe Carvalho, Fiona Lyng, Franck Bonnier Dec 2015

Raman Spectroscopic Analysis Of Oral Squamous Cell Carcinoma And Oral Dysplasia In The High-Wavenumber Region, Hugh Byrne, Luis Felipe Carvalho, Fiona Lyng, Franck Bonnier

Articles

Raman spectroscopy can provide a molecular-level signature of the biochemical composition and structure of cells with excellent spatial resolution and could be useful to monitor changes in composition for early stage and non-invasive cancer diagnosis, both ex-vivo and in vivo. In particular, the fingerprint spectral region (400–1,800 cm-1) has been shown to be very promising for optical biopsy purposes. However, limitations to discrimination of dysplastic and inflammatory processes based on the fingerprint region still persist. In addition, the Raman spectral signal of dysplastic cells is one important source of misdiagnosis of normal versus pathological tissues. The high wavenumber …


Raman Spectroscopy For Screening And Diagnosis Of Cervical Cancer, Fiona Lyng, Damien Traynor, Ines Rm Ramos, Franck Bonnier, Hugh Byrne Nov 2015

Raman Spectroscopy For Screening And Diagnosis Of Cervical Cancer, Fiona Lyng, Damien Traynor, Ines Rm Ramos, Franck Bonnier, Hugh Byrne

Articles

Cervical cancer is the fourth most common cancer in women worldwide and mainly affects younger women. The mortality associated with cervical cancer can be reduced if this disease is detected at the pre-cancer stage. Current gold standard methods include cytopathology, HPV testing and histopathology but these methods are limited in terms of subjectivity, cost and time. There is an unmet clinical need for new methods to aid clinicians in the early detection of cervical pre-cancer. These methods should be objective, rapid and require minimal sample preparation. Raman spectroscopy is a vibrational spectroscopic technique by which incident radiation is used to …


Investigating The Role Of Shape On The Biological Impact Of Gold Nanoparticles In Vitro, Furong Tian, Hugh Byrne, Joao Conde, Tobias Stoeger, Martin Clift,, Alan Casey, Pablo Del Pino, Beatriz Pelaz, Barbara Rothen-Rutishauser,, Giovani Estrada, Jesús De La Fuente Nov 2015

Investigating The Role Of Shape On The Biological Impact Of Gold Nanoparticles In Vitro, Furong Tian, Hugh Byrne, Joao Conde, Tobias Stoeger, Martin Clift,, Alan Casey, Pablo Del Pino, Beatriz Pelaz, Barbara Rothen-Rutishauser,, Giovani Estrada, Jesús De La Fuente

Articles

Aim: To investigate the influence of gold nanoparticle (GNP) geometry on the biochemical response of Calu-3 epithelial cells.

Materials and Methods: Spherical, triangular and hexagonal GNPs were used. The GNP-cell interaction was assessed via atomic absorption spectroscopy (AAS) and transmission electron microscopy (TEM). The biochemical impact of GNPs was determined over 72hrs at [0.0001-1mg/mL].

Results: At 1mg/mL, hexagonal GNPs reduced Calu-3 viability below 60%, showed increased reactive oxygen species production and higher expression of pro-apoptotic markers. A cell mass burden of 1:2:12 as well as number of GNPs per cell (2:1:3) was observed for spherical:triangular:hexagonal GNPs.

Conclusion:

These findings do …


Vibrational Spectroscopic Analysis Of Body Fluids: Avoiding Molecular Contamination Using Centrifugal Filtration, Franck Bonnier, Matthew Baker, Hugh Byrne Jan 2014

Vibrational Spectroscopic Analysis Of Body Fluids: Avoiding Molecular Contamination Using Centrifugal Filtration, Franck Bonnier, Matthew Baker, Hugh Byrne

Articles

The use of centrifugal filtration for protein purification and concentration represents an important improvement for the application of vibrational spectroscopy to analysis of bodily fluids based on protein fractions with specific molecular weight. Vibrational spectroscopic techniques are highly specific and can potentially detect small variations in the protein content indicating the presence of different diseases, therefore usable as markers for early diagnostic. However, due to the high sensitivity of the techniques, it is essential to verify that no molecular contamination occurs during the preparation of the samples. Concentration of the blood serum using commercially available centrifugal filters has been shown …


Vibrational Spectroscopy: Disease Diagnostics And Beyond, Hugh Byrne, Kamila Ostrowska, Haq Nawaz, Jennifer Dorney, Aidan Meade, Franck Bonnier, Fiona Lyng Jan 2014

Vibrational Spectroscopy: Disease Diagnostics And Beyond, Hugh Byrne, Kamila Ostrowska, Haq Nawaz, Jennifer Dorney, Aidan Meade, Franck Bonnier, Fiona Lyng

Books/Book Chapters

Summary

This chapter outlines some developments in the applications of vibrational spectroscopy for disease diagnostics and demonstrates how the applications of the spectroscopic techniques can be extended to the analysis and evaluation of disease aetiology and the mechanisms of interaction and the cellular and subcellular responses to, for example chemotherapeutic agents and nanoparticles. The primary emphasis is on Raman spectroscopy, although some examples are based on infrared absorption spectroscopy. The studies presented are chosen to illustrate how a range of multivariate analytical techniques can be employed to maximize the potential benefits of the complex spectral information obtained from tissue or …


Raman Spectroscopic Analysis Of Human Skin Tissue Sections Ex-Vivo: Evaluation Of The Effects Of Tissue Processing And Dewaxing, Syed Mehmood Ali, Franck Bonnier, Ali Tfayli, Helen Lambkin, Kathleen Flynn, Vincent Mcdonagh, Claragh Healy, Thomas Lee, Fiona Lyng, Hugh Byrne Jun 2013

Raman Spectroscopic Analysis Of Human Skin Tissue Sections Ex-Vivo: Evaluation Of The Effects Of Tissue Processing And Dewaxing, Syed Mehmood Ali, Franck Bonnier, Ali Tfayli, Helen Lambkin, Kathleen Flynn, Vincent Mcdonagh, Claragh Healy, Thomas Lee, Fiona Lyng, Hugh Byrne

Articles

Raman spectroscopy coupled with K-means clustering analysis (KMCA) is employed to elucidate the biochemical structure of human skin tissue sections, and the effects of tissue processing. Both hand and thigh sections of human cadavers were analysed in their unprocessed and formalin fixed paraffin processed (FFPP) and subsequently dewaxed forms. In unprocessed sections, KMCA reveals clear differentiation of the stratum corneum, intermediate underlying epithelium and dermal layers for sections from both anatomical sites. The stratum corneum is seen to be relatively rich in lipidic content; the spectrum of the subjacent layers is strongly influenced by the presence of melanin, while that …


Electric Field Standing Wave Effects In Ft-Ir Transflection Spectra Of Biological Tissue Sections: Simulated Models Of Experimental Variability, Tomasz P. Wrobel, Barbara Wajnchold, Hugh Byrne, Malgorzata Baranska Jan 2013

Electric Field Standing Wave Effects In Ft-Ir Transflection Spectra Of Biological Tissue Sections: Simulated Models Of Experimental Variability, Tomasz P. Wrobel, Barbara Wajnchold, Hugh Byrne, Malgorzata Baranska

Articles

The so-called electric field standing wave effect (EFSW) has recently been demonstrated to significantly distort FT-IR spectra acquired in a transflection mode, both experimentally and in simulated models, bringing into question the appropriateness of the technique for sample characterization, particularly in the field of spectroscopy of biological materials. The predicted effects are most notable in the regime where the sample thickness is comparable to the source wavelength. In this work, the model is extended to sample thicknesses more representative of biological tissue sections and to include typical experimental factors which are demonstrated to reduce the predicted effects. These include integration …


The Bio-Nano-Interface In Predicting Nanoparticle Fate And Behaviour In Living Organisms: Towards Grouping And Categorising Nanomaterials And Ensuring Nanosafety By Design, Hugh Byrne, Arti Ahluwalia, Diana Boraschi,, Bengt Fadeel, Peter Gehr, Arno C. Gutleb, Michaela Kendall, Manthos Papadopoulos, Iseult Lynch Jan 2013

The Bio-Nano-Interface In Predicting Nanoparticle Fate And Behaviour In Living Organisms: Towards Grouping And Categorising Nanomaterials And Ensuring Nanosafety By Design, Hugh Byrne, Arti Ahluwalia, Diana Boraschi,, Bengt Fadeel, Peter Gehr, Arno C. Gutleb, Michaela Kendall, Manthos Papadopoulos, Iseult Lynch

Articles

In biological media, nanoparticles acquire a coating of biomolecules (proteins, lipids, polysaccharides) from their surroundings, which reduces their surface energy and confers a biological identity to the particles. This adsorbed layer is the interface between the nanomaterial and living systems and therefore plays a significant role in determining the fate and behaviour of the nanoparticles. This review summarises the state of the art in terms of understanding the bio-nano interface and provides direction for potential future research directions and some recommendations for future priorities and strategies to support the safe implementation of nanotechnologies. The central premise is that nanomaterials must …


Quantitative Reagent-Free Detection Of Fibrinogen Levels In Human Blood Plasma Using Raman Spectroscopy, Kelvin Poon, Fiona Lyng, Peter Knief, Orla L. Howe, Aidan Meade, James Curtin, Hugh Byrne, Joseph Vaughan Jan 2012

Quantitative Reagent-Free Detection Of Fibrinogen Levels In Human Blood Plasma Using Raman Spectroscopy, Kelvin Poon, Fiona Lyng, Peter Knief, Orla L. Howe, Aidan Meade, James Curtin, Hugh Byrne, Joseph Vaughan

Articles

Fibrinogen assays are commonly used as part of clinical screening tests to investigate haemorrhagic states, for detection of disseminated intravascular coagulation and as a predictor of a variety of cardiovascular events. The Clauss assay, which measures thrombin clotting time, is the most commonly used method for measuring fibrinogen levels. Nevertheless, inconsistencies are present in inter-manufacturer reagent sources, calibration standards and methodologies. Automated coagulation analysers, which measure changes in optical density during the prothrombin time (PT-Fg), have found use in many hospitals. However, the PT-Fg method is found to give falsely elevated values due to varying choices of calibrants, reagents and …


Potential Of Vibrational Spectroscopy In The Diagnosis Of Human Tumours., Eoghan O'Faolain Jan 2006

Potential Of Vibrational Spectroscopy In The Diagnosis Of Human Tumours., Eoghan O'Faolain

Doctoral

Just fewer than 20,000 people are annually diagnosed with some form of cancer in Ireland and one in three people are likely to contract some form of cancer by age 74. With the number of cases increasing at an annual rate of 2%, the early detection and treatment of cancer is becoming increasingly important. Both IR and Raman spectroscopy offer the potential for real time, quantitative detection of cancer and even precancer. This study investigates the potential of Raman and Fourier transform infrared, both benchtop and synchrotron spectroscopies for the detection of cervical cancer. The tissue was classified and its …