Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Syracuse University

Solar cells

2006

Articles 1 - 2 of 2

Full-Text Articles in Physics

Hole Mobilities And The Physics Of Amorphous Silicon Solar Cells, Eric A. Schiff Jan 2006

Hole Mobilities And The Physics Of Amorphous Silicon Solar Cells, Eric A. Schiff

Physics

The effects of low hole mobilities in the intrinsic layer of pin solar cells are illustrated using general computer modeling; in these models electron mobilities are assumed to be much larger than hole values. The models reveal that a low hole mobility can be the most important photocarrier transport parameter in determining the output power of the cell, and that the effects of recombination parameters are much weaker. Recent hole drift-mobility measurements in a-Si:H are compared. While hole drift mobilities in intrinsic a-Si:H are now up to tenfold larger than two decades ago, even with recent materials a-Si ...


Hole Mobility Limit Of Amorphous Silicon Solar Cells, Jiang Liang, Eric A. Schiff, S. Guha, Baojie Yan, Jeff Yang Jan 2006

Hole Mobility Limit Of Amorphous Silicon Solar Cells, Jiang Liang, Eric A. Schiff, S. Guha, Baojie Yan, Jeff Yang

Physics

We present temperature-dependent measurements and modeling for a thickness series of hydrogenated amorphous silicon nip solar cells. The comparison indicates that the maximum power density (PMAX) from the as-deposited cells has achieved the hole-mobility limit established by valence bandtail trapping, and PMAX is thus not significantly limited by intrinsic-layer dangling bonds or by the doped layers and interfaces. Measurements of the temperature-dependent properties of light-soaked cells show that the properties of as-deposited and light-soaked cells converge below 250 K; a model perturbing the valence band tail traps with a density of dangling bonds accounts adequately for the convergence effect.