Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Emp And Geomagnetic Storm Protection Of Critical Infrastructure, George H. Baker Iii May 2012

Emp And Geomagnetic Storm Protection Of Critical Infrastructure, George H. Baker Iii

George H Baker

EMP and solar storm wide geographic coverage and ubiquitous system effects beg the question of “Where to begin?” with protection efforts. Thus, in addressing these “wide area electromagnetic (EM) effects,” we must be clever in deciding where to invest limited resources. Based on simple risk analysis, the electric power and communication infrastructures emerge as the highest priority for EM protection. Programs focused on these highest risk infrastructures will go a long way in lessoning societal impact. Given the national scope of the effects, such programs must be coordinated at the national level but implemented at local level. Because wide-area EM ...


Risk-Based Critical Infrastructure Protection Priorities For Emp And Solar Storms, George H. Baker Iii Sep 2011

Risk-Based Critical Infrastructure Protection Priorities For Emp And Solar Storms, George H. Baker Iii

George H Baker

The Commission to Assess the Threat to the United States from Electromagnetic Pulse Attack has provided a compelling case for protecting civilian infrastructure against the effects of EMP. As with protecting infrastructure against any hazard, it will be important to take a risk-based priority approach for EMP, recognizing that it is fiscally impracticable to protect everything. In this regard, EMP is particularly challenging in that it interferes with electrical and electronic data, control, transmission, and communication systems organic to nearly all infrastructures in a simultaneous and wide-scale manner. And, for nuclear burst altitudes of 100s of kilometers, the exposed geography ...


Emp: A Brief Tutorial, George H. Baker Iii Jul 2011

Emp: A Brief Tutorial, George H. Baker Iii

George H Baker

A nuclear detonation at altitudes from about 30 to 500 kilometers generates a strong electromagnetic pulse (EMP) that propagates to points on the ground within the line-of-sight of the burst. For bursts above 100 kilometers, electronics can be affected over continental scale areas. The EMP induces large voltages and currents in antennas and cables of electronic systems that will upset operation or damage circuit components if protection measures are not present. The article provides a brief tutorial on EMP environments, effects and protection.


Nuclear Emp Hardening Approach As The Basis For Unified Electromagnetic Environmental Effects Protection, George H. Baker Iii Dec 1991

Nuclear Emp Hardening Approach As The Basis For Unified Electromagnetic Environmental Effects Protection, George H. Baker Iii

George H Baker

Operation DESERT STORM demonstrated the clear military advantage that was provided by our sophisticated electronic C4I and weapons systems. High tech means so dominate the battlefield that the outcome of future conflicts could be decided by electronics attrition rather than human casualties. However, the electromagnetic threat landscape is highly complex. The already formidable list of environments (EMI, lighting, ESD, EMP, HERO, TEMPEST, EW, etc.) is lengthened by emerging threats from high power microwave (HPM) and ultra-wide band (UWB) electromagnetic weapons. Many of these environments overlap in the frequency and amplitude of the electrical stresses they create.

The large number of ...


Emp Analysis Of An Fm Communications Radio With A Long Wire Antenna, George H. Baker Iii, Werner J. Stark May 1978

Emp Analysis Of An Fm Communications Radio With A Long Wire Antenna, George H. Baker Iii, Werner J. Stark

George H Baker

A Norton equivalent circuit is developed for a long-wire antenna used with a VHF man-pack FM radio exposed to an incident electromagnetic pulse (EMP). The required short-circuit current and antenna impedance are computed by use of a transmission-line model for the antenna, and the computations are compared with measurements of the short-circuit current and antenna impedance. The comparison shows that the transmission-line model for the antenna is adequate for performing a vulnerability analysis of the radio. A network model is developed for a portion of the radio and is used as the load in the Norton equivalent circuit. Load currents ...