Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Laser wakefield acceleration (theory)

2011

Articles 1 - 5 of 5

Full-Text Articles in Physics

Physics Of Quasi-Monoenergetic Laser-Plasma Acceleration Of Electrons In The Blowout Regime, Serguei Y. Kalmykov, Bradley A. Shadwick, Arnaud Beck, Erik Lefebvre Oct 2011

Physics Of Quasi-Monoenergetic Laser-Plasma Acceleration Of Electrons In The Blowout Regime, Serguei Y. Kalmykov, Bradley A. Shadwick, Arnaud Beck, Erik Lefebvre

Serge Youri Kalmykov

No abstract provided.


Electron Self-Injection Into An Evolving Plasma Bubble: Quasi-Monoenergetic Laser-Plasma Acceleration In The Blowout Regime, Serguei Y. Kalmykov, Arnaud Beck, Sunghwan A. Yi, Vladimir N. Khudik, Michael C. Downer, Erik Lefebvre, Bradley A. Shadwick, Donald P. Umstadter Apr 2011

Electron Self-Injection Into An Evolving Plasma Bubble: Quasi-Monoenergetic Laser-Plasma Acceleration In The Blowout Regime, Serguei Y. Kalmykov, Arnaud Beck, Sunghwan A. Yi, Vladimir N. Khudik, Michael C. Downer, Erik Lefebvre, Bradley A. Shadwick, Donald P. Umstadter

Donald P. Umstadter

An electron density bubble driven in a rarefied uniform plasma by a slowly evolving laser pulse goes through periods of adiabatically slow expansions and contractions. Bubble expansion causes robust self-injection of initially quiescent plasma electrons, whereas stabilization and contraction terminate self-injection thus limiting injected charge; concomitant phase space rotation reduces the bunch energy spread. In regimes relevant to experiments with hundred terawatt- to petawatt-class lasers, bubble dynamics and, hence, the self-injection process are governed primarily by the driver evolution. Collective transverse fields of the trapped electron bunch reduce the accelerating gradient and slow down phase space rotation. Bubble expansion followed …


Electron Self-Injection Into An Evolving Plasma Bubble: Quasi-Monoenergetic Laser-Plasma Acceleration In The Blowout Regime, Serguei Y. Kalmykov, Arnaud Beck, Sunghwan A. Yi, Vladimir N. Khudik, Michael C. Downer, Erik Lefebvre, Bradley A. Shadwick, Donald P. Umstadter Apr 2011

Electron Self-Injection Into An Evolving Plasma Bubble: Quasi-Monoenergetic Laser-Plasma Acceleration In The Blowout Regime, Serguei Y. Kalmykov, Arnaud Beck, Sunghwan A. Yi, Vladimir N. Khudik, Michael C. Downer, Erik Lefebvre, Bradley A. Shadwick, Donald P. Umstadter

Serge Youri Kalmykov

An electron density bubble driven in a rarefied uniform plasma by a slowly evolving laser pulse goes through periods of adiabatically slow expansions and contractions. Bubble expansion causes robust self-injection of initially quiescent plasma electrons, whereas stabilization and contraction terminate self-injection thus limiting injected charge; concomitant phase space rotation reduces the bunch energy spread. In regimes relevant to experiments with hundred terawatt- to petawatt-class lasers, bubble dynamics and, hence, the self-injection process are governed primarily by the driver evolution. Collective transverse fields of the trapped electron bunch reduce the accelerating gradient and slow down phase space rotation. Bubble expansion followed …


Dark-Current-Free Petawatt Laser-Driven Wakefield Accelerator Based On Electron Self-Injection Into An Expanding Plasma Bubble, Serguei Y. Kalmykov, Sunghwan A. Yi, Arnaud Beck, Agustin F. Lifschitz, Xavier Davoine, Erik Lefebvre, Vladimir N. Khudik, Gennady Shvets, Michael C. Downer Dec 2010

Dark-Current-Free Petawatt Laser-Driven Wakefield Accelerator Based On Electron Self-Injection Into An Expanding Plasma Bubble, Serguei Y. Kalmykov, Sunghwan A. Yi, Arnaud Beck, Agustin F. Lifschitz, Xavier Davoine, Erik Lefebvre, Vladimir N. Khudik, Gennady Shvets, Michael C. Downer

Serge Youri Kalmykov

A dark-current-free plasma accelerator driven by a short (~ 150 fs) self-guided petawatt laser pulse is proposed. The accelerator uses two plasma layers, one of which, short and dense, acts as a thin nonlinear lens. It is followed by a long rarefied plasma (~ 10^{17} electrons cm^{−3}) in which background electrons are trapped and accelerated by a nonlinear laser wakefield. The pulse overfocused by the plasma lens diffracts in low-density plasma as in vacuum and drives in its wake a rapidly expanding electron density bubble. The expanding bubble effectively traps initially quiescent electrons. The trapped charge given by quasi-cylindrical three-dimensional …


Hamiltonian Analysis Of Electron Self-Injection And Acceleration Into An Evolving Plasma Bubble, Sunghwan A. Yi, Vladimir N. Khudik, Serguei Y. Kalmykov, Gennady Shvets Dec 2010

Hamiltonian Analysis Of Electron Self-Injection And Acceleration Into An Evolving Plasma Bubble, Sunghwan A. Yi, Vladimir N. Khudik, Serguei Y. Kalmykov, Gennady Shvets

Serge Youri Kalmykov

Injection and acceleration of the background plasma electrons in laser wakefield accelerators (LWFA) operated in the blowout (‘bubble’) regime are analysed. Using a model of a slowly expanding spherical plasma bubble propagating with an ultra-relativistic speed, we derive a sufficient condition for the electron injection: the change in the electron’s Hamiltonian in the co-moving with the bubble reference frame must exceed its rest mass energy m_{e}c^2. We demonstrate the existence of the minimal expansion rate of the bubble needed for electron injection. We demonstrate that if the bubble’s expansion is followed by its stabilization or contraction, then a quasi-monoenergetic electron …