Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Position-Sensitive Detection Of Ultracold Neutrons With An Imaging Camera And Its Implications To Spectroscopy, Wanchun Wei, Leah J. Broussard, Mark A. Hoffbauer, Mark Makela, Charles L. Morris, Zebo Tang, Evan R. Adamek, Nathan B. Callahan, Stephen M. Clayton, Chris Cude-Woods, Scott Currie, Eric B. Dees, Xinjian Ding, Peter Geltenbort, Kevin P. Hickerson, Anthony T. Holley, Takeyasu M. Ito, Kent K. Leung, Chenyu Y. Liu, Deborah J. Morley, Jose D. Ortiz, Robert W. Pattie, John C. Ramsey, Alexander Saunders, Susan J. Seestrom, Eduard I. Sharapov, S. K. Sjue, Judith Wexler, Tanner L. Womack, Albert R. Young, B. A. Zeck, Zhehui Wang Sep 2016

Position-Sensitive Detection Of Ultracold Neutrons With An Imaging Camera And Its Implications To Spectroscopy, Wanchun Wei, Leah J. Broussard, Mark A. Hoffbauer, Mark Makela, Charles L. Morris, Zebo Tang, Evan R. Adamek, Nathan B. Callahan, Stephen M. Clayton, Chris Cude-Woods, Scott Currie, Eric B. Dees, Xinjian Ding, Peter Geltenbort, Kevin P. Hickerson, Anthony T. Holley, Takeyasu M. Ito, Kent K. Leung, Chenyu Y. Liu, Deborah J. Morley, Jose D. Ortiz, Robert W. Pattie, John C. Ramsey, Alexander Saunders, Susan J. Seestrom, Eduard I. Sharapov, S. K. Sjue, Judith Wexler, Tanner L. Womack, Albert R. Young, B. A. Zeck, Zhehui Wang

Robert W. Pattie Jr.

Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15μmhas been achieved, which is equivalent to a UCN energy resolution below 2 pico-electron-volts through the relation δE=m0gδx. Here, the symbols δEδxm0 and gare the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile …


Infrared Skin Damage Thresholds From 1319-Nm Continous-Wave Laser Exposures, Gavin D. Buffington, Clifton D. Clark Aug 2016

Infrared Skin Damage Thresholds From 1319-Nm Continous-Wave Laser Exposures, Gavin D. Buffington, Clifton D. Clark

Gavin Buffington

A series of experiments were conducted in vivo using Yucatan miniature pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1319-nm continuous-wave Nd:YAG laser irradiation. Experiments employed exposure durations of 0.25, 1.0, 2.5, and 10 s and beam diameters of ∼0.6 and 1 cm. Thermal imagery data provided a time-dependent surface temperature response from the laser. A damage endpoint of fifty percent probability of a minimally visible effect was used to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a numerical model of opticalthermal interaction. …


Infrared Skin Damage Thresholds From 1319-Nm Continous-Wave Laser Exposures, Gavin D. Buffington, Clifton D. Clark Aug 2016

Infrared Skin Damage Thresholds From 1319-Nm Continous-Wave Laser Exposures, Gavin D. Buffington, Clifton D. Clark

Clifton D. Clark

A series of experiments were conducted in vivo using Yucatan miniature pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1319-nm continuous-wave Nd:YAG laser irradiation. Experiments employed exposure durations of 0.25, 1.0, 2.5, and 10 s and beam diameters of ∼0.6 and 1 cm. Thermal imagery data provided a time-dependent surface temperature response from the laser. A damage endpoint of fifty percent probability of a minimally visible effect was used to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a numerical model of opticalthermal interaction. …


Retardation Of Bulk Water Dynamics By Disaccharide Osmolytes.Pdf, Nimesh Shukla Aug 2016

Retardation Of Bulk Water Dynamics By Disaccharide Osmolytes.Pdf, Nimesh Shukla

Nimesh Shukla

No abstract provided.


Measurement Of Spin-Flip Probabilities For Ultracold Neutrons Interacting With Nickel Phosphorus Coated Surfaces, Zhaowen Tang, Evan Robert Adamek, Aaron Brandt, Nathan Brannan Callahan, Steven M. Clayton, Scott Allister Currie, Takeyasu M. Ito, Mark F. Makela, Yasuhiro Masuda, Christopher L. Morris, Robert Wayne Pattie, John Clinton Ramsey, Daniel J. Salvat, Daniel J. Salvat, Alexander Saunders, Albert R. Young Aug 2016

Measurement Of Spin-Flip Probabilities For Ultracold Neutrons Interacting With Nickel Phosphorus Coated Surfaces, Zhaowen Tang, Evan Robert Adamek, Aaron Brandt, Nathan Brannan Callahan, Steven M. Clayton, Scott Allister Currie, Takeyasu M. Ito, Mark F. Makela, Yasuhiro Masuda, Christopher L. Morris, Robert Wayne Pattie, John Clinton Ramsey, Daniel J. Salvat, Daniel J. Salvat, Alexander Saunders, Albert R. Young

Robert W. Pattie Jr.

We report a measurement of the spin-flip probabilities for ultracold neutrons interacting with surfaces coated with nickel phosphorus. For 50 μm thick nickel phosphorus coated on stainless steel, the spin-flip probability per bounce was found to be βNiPonSS=(3.3−5.6+1.8)×10−6. For 50 μm thick nickel phosphorus coated on aluminum, the spin-flip probability per bounce was found to be βNiPonAl=(3.6−5.9+2.1)×10−6. For the copper guide used as reference, the spin flip probability per bounce was found to be βCu=(6.7−2.5+5.0)×10−6. The results on the nickel phosphorus-coated surfaces may be interpreted as upper limits, yielding βNiPonSS<6.2×10−6 (90% C.L.) and βNiPonAl<7.0×10−6 (90% C.L.) for 50 μm thick …


Interrogating Metabolism In Brain Cancer, Travis Salzillo, Jingzhe Hu, Linda Nguyen, Nicholas Whiting, Jaehyuk Lee, Joseph Weygand, Prasanta Dutta, Shivanand Pudakalakatti, Niki Zacharias Millward, Seth Gammon, Frederick F. Lang, Amy B. Heimberger, Pratip Bhattacharya Dec 2015

Interrogating Metabolism In Brain Cancer, Travis Salzillo, Jingzhe Hu, Linda Nguyen, Nicholas Whiting, Jaehyuk Lee, Joseph Weygand, Prasanta Dutta, Shivanand Pudakalakatti, Niki Zacharias Millward, Seth Gammon, Frederick F. Lang, Amy B. Heimberger, Pratip Bhattacharya

Nicholas Whiting

Many existing and emerging techniques of interrogating metabolism in brain cancer are at an early stage of development. A few clinical trials that employ these techniques are in progress in patients with brain cancer to establish the clinical efficacy of these techniques. It is likely that in vivo metabolomics and metabolic imaging is the next frontier in brain cancer diagnosis and assessing therapeutic efficacy.