Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Serge Youri Kalmykov

Comb-like electron beams

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physics

Optically Controlled Laser-Plasma Electron Accelerator For Compact Gamma-Ray Sources, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick Feb 2018

Optically Controlled Laser-Plasma Electron Accelerator For Compact Gamma-Ray Sources, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick

Serge Youri Kalmykov

Generating quasi-monochromatic, femtosecond gamma-ray pulses via Thomson scattering (TS) demands exceptional electron beam (e-beam) quality, such as percent scale energy spread and five-dimensional brightness over 10^16 A/m^2. We show that near-GeV e-beams with these metrics can be accelerated in a cavity of electron density, driven with an incoherent stack of Joule-scale laser pulses through a mm-size, dense plasma (n ~ 10^19 cm^-􀀀3). Changing the time delay, frequency difference, and energy ratio of the stack components controls the e-beam phase space on the femtosecond scale, while the modest energy of the optical driver helps afford kHz-scale repetition rate at manageable average …


Multi-Color Γ-Rays From Comb-Like Electron Beams Driven By Incoherent Stacks Of Laser Pulses, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick Mar 2017

Multi-Color Γ-Rays From Comb-Like Electron Beams Driven By Incoherent Stacks Of Laser Pulses, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick

Serge Youri Kalmykov

Trains of fs-length, GeV-scale electron bunches with controlled energy spacing and a 5-D brightness up to
10^17 A/m^2 may be produced in a mm-scale uniform plasma. The main element of the scheme is an incoherent stack of 10-TW-scale laser pulses of different colors, with mismatched focal spots, with the highest-frequency pulse advanced in time. While driving an electron density bubble, this stack remains almost proof against nonlinear red-shift and self-compression. As a consequence, the unwanted continuous injection of background electrons is minimized. Weak focusing of the trailing (lower-frequency) component of the stack enforces expansions and contractions of the bubble, inducing …


Controlled Generation Of Comb-Like Electron Beams In Plasma Channels For Polychromatic Inverse Thomson Gamma-Ray Sources, Serge Y. Kalmykov, X. Davoine, I Ghebregziabher, R Lehe, A F. Lifschitz, B A. Shadwick Feb 2016

Controlled Generation Of Comb-Like Electron Beams In Plasma Channels For Polychromatic Inverse Thomson Gamma-Ray Sources, Serge Y. Kalmykov, X. Davoine, I Ghebregziabher, R Lehe, A F. Lifschitz, B A. Shadwick

Serge Youri Kalmykov

Propagating a relativistically intense, negatively chirped laser pulse (the bandwidth > 150 nm) in a plasma channel makes it possible to generate background-free, comb-like electron beams - sequences of synchronized bunches with a low phase-space volume and controlled energy spacing. The tail of the pulse, confined in the accelerator cavity (an electron density ‘bubble’), experiences periodic focusing, while the head, which is the most intense portion of the pulse, steadily self-guides. Oscillations of the cavity size cause periodic injection of electrons from the ambient plasma, creating an electron energy comb with the number of components, their mean energy, and energy …