Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Evaluation Of Commercial Nickel–Phosphorus Coating For Ultracold Neutron Guides Using A Pinhole Bottling Method, Robert W. Pattie, Evan R. Adamek, T. Brenner, A. Brandt, Leah J. Broussard, Nathan Callahan, Stephen M. Clayton, Chris Cude-Woods, Scott A. Currie, Peter Geltenbort, Takeyasu M. Ito, T. Lauer, Chenyu Liu, Jaroslaw Majewski, Mark F. Makela, Yasuhiro Masuda, Christopher L. Morris, John C. Ramsey, Daniel J. Salvat, Alexander Saunders, Juri Schroffenegger, Zebo Tang, Wanchun Wei, Zhehui Wang, Erik B. Watkins, Albert R. Young, B.A. Zeck Aug 2017

Evaluation Of Commercial Nickel–Phosphorus Coating For Ultracold Neutron Guides Using A Pinhole Bottling Method, Robert W. Pattie, Evan R. Adamek, T. Brenner, A. Brandt, Leah J. Broussard, Nathan Callahan, Stephen M. Clayton, Chris Cude-Woods, Scott A. Currie, Peter Geltenbort, Takeyasu M. Ito, T. Lauer, Chenyu Liu, Jaroslaw Majewski, Mark F. Makela, Yasuhiro Masuda, Christopher L. Morris, John C. Ramsey, Daniel J. Salvat, Alexander Saunders, Juri Schroffenegger, Zebo Tang, Wanchun Wei, Zhehui Wang, Erik B. Watkins, Albert R. Young, B.A. Zeck

Robert W. Pattie Jr.

We report on the evaluation of commercial electroless nickel phosphorus (NiP) coatings for ultracold neutron (UCN) transport and storage. The material potential of 50μm thick NiP coatings on stainless steel and aluminum substrates was measured to be V F=213(5.2)neV using the time-of-flight spectrometer ASTERIX at the Lujan Center. The loss per bounce probability was measured in pinhole bottling experiments carried out at ultracold neutron sources at Los Alamos Neutron Science Center and the Institut Laue-Langevin. For these tests a new guide coupling design was used to minimize gaps between the guide sections. The observed UCN loss in the bottle …


Position-Sensitive Detection Of Ultracold Neutrons With An Imaging Camera And Its Implications To Spectroscopy, Wanchun Wei, Leah J. Broussard, Mark A. Hoffbauer, Mark Makela, Charles L. Morris, Zebo Tang, Evan R. Adamek, Nathan B. Callahan, Stephen M. Clayton, Chris Cude-Woods, Scott Currie, Eric B. Dees, Xinjian Ding, Peter Geltenbort, Kevin P. Hickerson, Anthony T. Holley, Takeyasu M. Ito, Kent K. Leung, Chenyu Y. Liu, Deborah J. Morley, Jose D. Ortiz, Robert W. Pattie, John C. Ramsey, Alexander Saunders, Susan J. Seestrom, Eduard I. Sharapov, S. K. Sjue, Judith Wexler, Tanner L. Womack, Albert R. Young, B. A. Zeck, Zhehui Wang Sep 2016

Position-Sensitive Detection Of Ultracold Neutrons With An Imaging Camera And Its Implications To Spectroscopy, Wanchun Wei, Leah J. Broussard, Mark A. Hoffbauer, Mark Makela, Charles L. Morris, Zebo Tang, Evan R. Adamek, Nathan B. Callahan, Stephen M. Clayton, Chris Cude-Woods, Scott Currie, Eric B. Dees, Xinjian Ding, Peter Geltenbort, Kevin P. Hickerson, Anthony T. Holley, Takeyasu M. Ito, Kent K. Leung, Chenyu Y. Liu, Deborah J. Morley, Jose D. Ortiz, Robert W. Pattie, John C. Ramsey, Alexander Saunders, Susan J. Seestrom, Eduard I. Sharapov, S. K. Sjue, Judith Wexler, Tanner L. Womack, Albert R. Young, B. A. Zeck, Zhehui Wang

Robert W. Pattie Jr.

Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15μmhas been achieved, which is equivalent to a UCN energy resolution below 2 pico-electron-volts through the relation δE=m0gδx. Here, the symbols δEδxm0 and gare the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile …


A Multilayer Surface Detector For Ultracold Neutrons Sep 2015

A Multilayer Surface Detector For Ultracold Neutrons

Robert W. Pattie Jr.

A multilayer surface detector for ultracold neutrons (UCNs) is described. The top 10B layer is exposed to the vacuum chamber and directly captures UCNs. The ZnS:Ag layer beneath the 10B layer is a few microns thick, which is sufficient to detect the charged particles from the 10B(n,α)7Li neutron-capture reaction, while thin enough so that ample light due to α and 7Li escapes for detection by photomultiplier tubes. One-hundred-nm thick 10B layer gives high UCN detection efficiency, as determined by the mean UCN kinetic energy, detector materials and others. Low background, including …