Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Physics

Hybrid Type-I Inas/Gaas And Type-Ii Gasb/Gaas Quantum Dot Structure With Enhanced Photoluminescence, Hai-Ming Ji, Baolai Liang, Paul J. Simmonds, Bor-Chau Juang, Tao Yang, Robert J. Young, Diana L. Huffaker Apr 2015

Hybrid Type-I Inas/Gaas And Type-Ii Gasb/Gaas Quantum Dot Structure With Enhanced Photoluminescence, Hai-Ming Ji, Baolai Liang, Paul J. Simmonds, Bor-Chau Juang, Tao Yang, Robert J. Young, Diana L. Huffaker

Paul J. Simmonds

We investigate the photoluminescence (PL) properties of a hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot (QD) structure grown in a GaAs matrix by molecular beam epitaxy. This hybrid QD structure exhibits more intense PL with a broader spectral range, compared with control samples that contain only InAs or GaSb QDs. This enhanced PL performance is attributed to additional electron and hole injection from the type-I InAs QDs into the adjacent type-II GaSb QDs. We confirm this mechanism using time-resolved and power-dependent PL.These hybrid QD structures show potential for high efficiency QD solar cell applications.


Tensile Gaas(111) Quantum Dashes With Tunable Luminescence Below The Bulk Bandgap, Paul J. Simmonds Aug 2014

Tensile Gaas(111) Quantum Dashes With Tunable Luminescence Below The Bulk Bandgap, Paul J. Simmonds

Paul J. Simmonds

Strain-based band engineering in quantum dots and dashes has been predominantly limited to compressively strained systems. However, tensile strain strongly reduces the bandgaps of nanostructures, enabling nanostructures to emit light at lower energies than they could under compressive strain. We demonstrate the self-assembled growth of dislocation-free GaAs quantum dashes on an InP(111)B substrate, using a 3.8% tensile lattice-mismatch. Due to the high tensile strain, the GaAs quantum dashes luminesce at 110–240 meV below the bandgap of bulk GaAs. The emission energy is readily tuned by adjusting the size of the quantum dashes via deposition thickness. Tensile ...


New Quantum Dot Nanomaterials To Boost Solar Energy Harvesting, Paul J. Simmonds Jan 2014

New Quantum Dot Nanomaterials To Boost Solar Energy Harvesting, Paul J. Simmonds

Paul J. Simmonds

Sequential photon absorption processes in semiconductor solar cells represent a route to improving their efficiency.


Effects Of Gaas(Sb) Cladding Layers On Inas/Alassb Quantum Dots, Paul J. Simmonds Jan 2013

Effects Of Gaas(Sb) Cladding Layers On Inas/Alassb Quantum Dots, Paul J. Simmonds

Paul J. Simmonds

The structural and optical properties of InAs self-assembled quantum dots buried in AlAs0.56Sb0.44 barriers can be controlled using GaAs1−xSbx cladding layers. These cladding layers allow us to manage the amount of Sb immediately underneath and above the InAs quantum dots. The optimal cladding scheme has a GaAs layer beneath the InAs, and a GaAs0.95Sb0.05 layer above. This scheme results in improved dot morphology and significantly increased photoluminescence (PL) intensity. Both power-dependent and time-resolved photoluminescence confirm that the quantum dots have type-II band alignment. Enhanced carrier lifetimes ...


Tensile-Strained Growth On Low-Index Gaas, Paul J. Simmonds, Minjoo Larry Lee Aug 2012

Tensile-Strained Growth On Low-Index Gaas, Paul J. Simmonds, Minjoo Larry Lee

Paul J. Simmonds

We present a comparative study of the growth of tensile-strained GaP on the four low-index surfaces of GaAs: (001), (110), (111)A, and (111)B. For each surface orientation we outline the growth conditions required for smooth GaAshomoepitaxy. We are able to predict the resulting surface morphology when GaP is deposited onto these four GaAssurfaces by considering the influence of surface orientation on tensile strain relief. GaP deposited on GaAs(001) forms extremely smooth, planar layers. In contrast, the elastic relief of tensile strain on both GaAs(110) and GaAs(111)A leads to the three-dimensional self-assembly of GaP into ...


Structural And Optical Properties Of Inas/Alassb Quantum Dots With Gaas(Sb) Cladding Layers, Paul J. Simmonds, Ramesh Babu Laghumavarapu, Meng Sun, Andrew Lin, Charles J. Reyner, Baolai Liang, Diana L. Huffaker Jun 2012

Structural And Optical Properties Of Inas/Alassb Quantum Dots With Gaas(Sb) Cladding Layers, Paul J. Simmonds, Ramesh Babu Laghumavarapu, Meng Sun, Andrew Lin, Charles J. Reyner, Baolai Liang, Diana L. Huffaker

Paul J. Simmonds

We investigate the effect of GaAs1−xSbxcladding layer composition on the growth and properties of InAsself-assembledquantum dots surrounded by AlAs0.56Sb0.44 barriers. Lowering Sb-content in the GaAs1−xSbx improves the morphology of the InAs quantum dots and reduces cladding layer alloy fluctuations. The result is a dramatic increase in photoluminescence intensity from the InAs quantum dots, with a peak at 0.87 eV. The emission energy exhibits a cube root dependence on excitation power, consistent with the type-II band alignment of the quantum dots. The characteristics of this quantum ...


Self-Assembly On (111)-Oriented Iii-V Surfaces, Paul J. Simmonds, Minjoo Larry Lee Sep 2011

Self-Assembly On (111)-Oriented Iii-V Surfaces, Paul J. Simmonds, Minjoo Larry Lee

Paul J. Simmonds

We demonstrate the self-assembly of tensile strained GaP into three-dimensional dots on GaAs(111)A. Size and areal density of the dislocation-free GaPdots are readily tunable with both substrate temperature and deposition thickness. GaP dot growth obeys island scaling theory, allowing us to predict dot size distributions a priori.


Molecular Beam Epitaxy Of Metamorphic InYGa1−YP Solar Cells On Mixed Anion GaasXP1−X/Gaas Graded Buffers, Stephanie Tomasulo, John Simon, Paul J. Simmonds, Jonathan Biagiotti, Minjoo L. Lee Apr 2011

Molecular Beam Epitaxy Of Metamorphic InYGa1−YP Solar Cells On Mixed Anion GaasXP1−X/Gaas Graded Buffers, Stephanie Tomasulo, John Simon, Paul J. Simmonds, Jonathan Biagiotti, Minjoo L. Lee

Paul J. Simmonds

The authors have grown metamorphic InyGa1−yP on optimized GaAsxP1−x/GaAs graded buffers via solid source molecular beam epitaxy(MBE) for multijunction solar cell applications. In this work, the authors show that a previously developed kinetic growth model can be used to predict the composition of mixed anion GaAsxP1−x alloys on GaAs as a function of substrate temperature and group-V flux. The advantages of using a high growth temperature of 700 °C are then described, including the minimized dependence of composition on small temperature variations, a linear dependence ...


Molecular Beam Epitaxy Approach To The Graphitization Of Gaas(100) Surfaces, Paul J. Simmonds, John Simon, Jerry M. Woodall, Minjoo Larry Lee Apr 2011

Molecular Beam Epitaxy Approach To The Graphitization Of Gaas(100) Surfaces, Paul J. Simmonds, John Simon, Jerry M. Woodall, Minjoo Larry Lee

Paul J. Simmonds

The authors present a method for obtaining graphitized carbon on GaAs(100) surfaces. Carbon-doped GaAs is grown by molecular beam epitaxy before controlled thermal etching within the growth chamber. An AlAs layer beneath the carbon-doped GaAs acts as a thermal etch stop. As the GaAs is etched away, the carbondopant atoms remain on the surface due to their low vapor pressure. The total number of carbon atoms available is precisely controllable by the doping density and thickness of the carbon-doped GaAs layer. Characteristic phonon modes in Raman spectra from the thermally etchedsurfaces show that the residual surfacecarbon atoms form sp ...


Graphitized Carbon On Gaas(100) Substrates, J. Simon, P. J. Simmonds, J. M. Woodall, M. L. Lee Feb 2011

Graphitized Carbon On Gaas(100) Substrates, J. Simon, P. J. Simmonds, J. M. Woodall, M. L. Lee

Paul J. Simmonds

We report on the formation of graphitized carbon on GaAs(100) surfaces by molecular beam epitaxy. We grew highly carbon-doped GaAs on AlAs, which was then thermally etched in situ leaving behind carbon atoms on the surface. After thermal etching, Raman spectra revealed characteristic phonon modes for sp2-bonded carbon, consistent with the formation of graphitic crystallites. We estimate that the graphitic crystallites are 1.5–3 nm in size and demonstrate that crystallite domain size can be increased through the use of higher etch temperatures.


Metamorphic Gaasp Buffers For Growth Of Wide-Bandgap Ingap Solar Cells, J. Simon, S. Tomasulo, P. J. Simmonds, M. Romero, M. L. Lee Dec 2010

Metamorphic Gaasp Buffers For Growth Of Wide-Bandgap Ingap Solar Cells, J. Simon, S. Tomasulo, P. J. Simmonds, M. Romero, M. L. Lee

Paul J. Simmonds

GaAsxP1−x graded buffers were grown via solid source molecular beam epitaxy(MBE) to enable the fabrication of wide-bandgap InyGa1−yP solar cells. Tensile-strained GaAsxP1−x buffers grown on GaAs using unoptimized conditions exhibited asymmetric strain relaxation along with formation of faceted trenches, 100–300 nm deep, running parallel to the [011] direction. We engineered a 6 μm thick grading structure to minimize the faceted trench density and achieve symmetric strain relaxation while maintaining a threading dislocation density of ≤106 cm−2. In comparison, compressively-strained graded GaAsx ...


Self-Assembled In0.5Ga0.5As Quantum Dots On Gap, Yuncheng Song, Paul J. Simmonds, Minjoo Larry Lee Nov 2010

Self-Assembled In0.5Ga0.5As Quantum Dots On Gap, Yuncheng Song, Paul J. Simmonds, Minjoo Larry Lee

Paul J. Simmonds

We demonstrate the growth and luminescence of coherently strained In0.5Ga0.5As self-assembled quantum dots on GaP. Cross-sectional and planar-view transmission electron microscopy confirmed the dislocation-free nature of the In0.5Ga0.5As quantum dots and GaP cap layers. Intense photoluminescence from the quantum dots was measured at 80 K and was visible to the unaided eye in ambient lighting. The photoluminescence results show that emission energy can be controlled by varying the In0.5Ga0.5As deposition thickness. In combination with recent advances in the growth of GaP on ...


Tensile Strained Island Growth At Step-Edges On Gaas(110), Paul J. Simmonds, M. L. Lee Oct 2010

Tensile Strained Island Growth At Step-Edges On Gaas(110), Paul J. Simmonds, M. L. Lee

Paul J. Simmonds

We report the growth of tensile strained GaP islands on a GaAs(110) surface. Three-dimensional island formation proceeds via a step-edge nucleation process. To explain the dislocation-free nature of these islands, we consider the kinetics of strain relief within the context of a model for dislocation glide as a function of surface orientation and sign of strain.


Tensile Strained Iii-V Self-Assembled Nanostructures On A (110) Surface, Minjoo L. Lee, Paul J. Simmonds Jul 2010

Tensile Strained Iii-V Self-Assembled Nanostructures On A (110) Surface, Minjoo L. Lee, Paul J. Simmonds

Paul J. Simmonds

The vast majority of research on epitaxial quantum dots use compressive strain as the driving force for self-assembly on the (001) surface, with InAs/GaAs(001) and Ge/Si(001) being the best-known examples. In this talk, I will discuss our work on determining the feasibility of growing coherent, tensile-strained III-V nanostructures on a (110) surface. GaP on GaAs(110) was chosen as an initial test system. It is hoped that our efforts on self-assembled, tensile-strained dots on a (110) surface will lead the way to new devices exploiting the fundamental differences between the (110) and (001) surfaces. Furthermore it ...


Growth Of Metamorphic Ingap For Wide-Bandgap Photovoltaic Junction By Mbe, John Simon, Stephanie Tomasulo, Paul J. Simmonds, Manuel J. Romero, Minjoo Larry Lee Apr 2010

Growth Of Metamorphic Ingap For Wide-Bandgap Photovoltaic Junction By Mbe, John Simon, Stephanie Tomasulo, Paul J. Simmonds, Manuel J. Romero, Minjoo Larry Lee

Paul J. Simmonds

Metamorphic triple-junction solar cells can currently attain efficiencies as high as 41.1%. Using additional junctions could lead to efficiencies above 50%, but require the development of a wide bandgap (2.0-2.2eV) material to act as the top layer. In this work we demonstrate wide bandgap InyGa1-yP grown on GaAsxP1-x via solid source molecular beam epitaxy. Unoptimized tensile GaAsxP1-x buffers grown on GaAs exhibit asymmetric strain relaxation, along with formation of faceted trenches 100-300 nm deep in the [01-1] direction. Smaller grading step size and higher substrate temperatures minimizes ...


Molecular Beam Epitaxy Of High Mobility In0.75Ga0.25As For Electron Spin Transport Applications, Paul J. Simmonds, S. N. Holmes, H. E. Beere, I. Farrer, F. Sfigakis, D. A. Ritchie, M. Pepper Jun 2009

Molecular Beam Epitaxy Of High Mobility In0.75Ga0.25As For Electron Spin Transport Applications, Paul J. Simmonds, S. N. Holmes, H. E. Beere, I. Farrer, F. Sfigakis, D. A. Ritchie, M. Pepper

Paul J. Simmonds

The authors describe the molecular beam epitaxy of relaxed, nominally undoped In0.75Ga0.25As–In0.75Al0.25As quantum well structures grown on InP substrates. The maximum two-dimensional electron density is 2 × 1011cm−2, with a peak mobility of 2.2 × 105cm2 V−1s−1 at 1.5K. In high magnetic field, the electron g-factor was shown to have a magnitude of 9.1 ± 0.1 at Landau-level filling factor of 4. The Rashba coefficient, determined from the analysis of the magnetoresistance at high Landau-level ...


Spin-Orbit Coupling In An In0.52Ga0.48As Quantum Well With Two Populated Subbands, P. J. Simmonds, S. N. Holmes, H. E. Beere, D. A. Ritchie Jun 2008

Spin-Orbit Coupling In An In0.52Ga0.48As Quantum Well With Two Populated Subbands, P. J. Simmonds, S. N. Holmes, H. E. Beere, D. A. Ritchie

Paul J. Simmonds

Structural inversion asymmetry controls the magnitude of Rashba spin-orbit coupling in the electron energy spectrum of a narrow band gap semiconductor. We investigate this effect for a series of two-dimensional electron gases in In0.52Ga0.48As quantum wells, surrounded by In0.52Al0.48As barriers, where either one or two electric subbands are populated. Structural inversion asymmetry does not exist at low carrier density while at higher carrier densities (above (4–5) × 1011 cm−2), a finite spin splitting is observed. The spin orbit coupling coefficients (α) are determined from the power ...


Technology Development & Design For 22 Nm Ingaas/Inp-Channel Mosfets, Paul J. Simmonds May 2008

Technology Development & Design For 22 Nm Ingaas/Inp-Channel Mosfets, Paul J. Simmonds

Paul J. Simmonds

Because of the low electron effective mass and the high resulting carrier velocities, we are developing InGaAs/InP MOSFETs for potential application in VLSI circuits at scaling generations beyond 22 nm. We will report device design, review gate dielectric growth processes, and describe in detail the development of process modules for fabrication of fully self-aligned enhancement-mode devices. Key design challenges include the effect of the low density of states upon drive current and the effect of the low carrier mass on vertical confinement. Target electrical parameters include ~5 mA/μm drive current and ~7 mS/μm2 transconductance. Key fabrication ...


Quantum Transport In In0.75Ga0.25As Quantum Wires, P. J. Simmonds, F. Sfigakis, H. E. Beere, D. A. Ritchie, M. Pepper, D. Anderson, G. A.C. Jones Apr 2008

Quantum Transport In In0.75Ga0.25As Quantum Wires, P. J. Simmonds, F. Sfigakis, H. E. Beere, D. A. Ritchie, M. Pepper, D. Anderson, G. A.C. Jones

Paul J. Simmonds

In addition to quantized conductance plateaus at integer multiples of 2e2/h, the differential conductance G=dI/dV shows plateaus at 0.25(2e2/h) and 0.75(2e2/h) under applied source-drain bias in In0.75Ga0.25As quantum wires defined by insulated split gates. This observation is consistent with a spin-gap model for the 0.7 structure. Using a tilted magnetic field to induce Landau level crossings, the g factor was measured to be ~9 by the coincidence method. This material, with a mobility of 1.8×105 ...


Growth-Temperature Optimization For Low Carrier-Density In0.75Ga0.25As-Based High Electron Mobility Transistors On Inp, Paul J. Simmonds, H. E. Beere, D. A. Ritchie, S. N. Holmes Oct 2007

Growth-Temperature Optimization For Low Carrier-Density In0.75Ga0.25As-Based High Electron Mobility Transistors On Inp, Paul J. Simmonds, H. E. Beere, D. A. Ritchie, S. N. Holmes

Paul J. Simmonds

Two-dimensional electron gases (2DEGs) were formed in undoped In0.75Al0.25As / In0.75Ga0.25As / In0.75Al0.25As quantum wells. The optimal growth temperature for this structure is 410°C, with peak 2DEG electron mobility and density values of μ = 221000 cm2/V s and n = 1.36 × 1011 cm−2 at 1.5 K. This electron mobility is equal to the highest previously published for these undoped structures but with a factor of 2 reduction in n. This has been achieved through the use of a ...


Quantum Dot Resonant Tunneling Diodes For Telecom Wavelength Single Photon Detection, H. W. Li, Paul J. Simmonds, H. E. Beere, B. E. Kardynał, D. A. Ritchie, A. J. Shields Sep 2007

Quantum Dot Resonant Tunneling Diodes For Telecom Wavelength Single Photon Detection, H. W. Li, Paul J. Simmonds, H. E. Beere, B. E. Kardynał, D. A. Ritchie, A. J. Shields

Paul J. Simmonds

Single photon detection was realized at a telecom wavelength with quantum dot resonant tunneling diodes grown on an InP substrate. The structure contains a AlAs/In0.53Ga0.47As/AlAs quantum well with InAs quantum dots grown on the top AlAs barrier. The single photon detection efficiency of the device under 1310 nm illumination was measured to be about 0.35% ± 0.07% with a dark count rate of 1.58×10-6 ns-1. This corresponds to an internal efficiency of 6.3%.


Quantum Dot Resonant Tunneling Diode For Telecommunication Wavelength Single Photon Detection, H. W. Li, B. E. Kardynał, P. See, A. J. Shields, P. Simmonds, H. E. Beere, D. A. Ritchie Aug 2007

Quantum Dot Resonant Tunneling Diode For Telecommunication Wavelength Single Photon Detection, H. W. Li, B. E. Kardynał, P. See, A. J. Shields, P. Simmonds, H. E. Beere, D. A. Ritchie

Paul J. Simmonds

The authors present a quantum dot (QD) based single photon detector operating at a fiber optic telecommunication wavelength. The detector is based on an AlAs/In0.53Ga0.47As/AlAs double-barrier resonant tunneling diode containing a layer of self-assembled InAs QDs grown on an InP substrate. The device shows an internal efficiency of about 6.3% with a dark count rate of 1.58 × 10−6 ns−1 for 1310 nm photons.


Growth By Molecular Beam Epitaxy Of Self-Assembled Inas Quantum Dots On Inalas And Ingaas Lattice-Matched To Inp, Paul J. Simmonds, H W. Li, H E. Beere, P See, A J. Shields, D A. Ritchie Apr 2007

Growth By Molecular Beam Epitaxy Of Self-Assembled Inas Quantum Dots On Inalas And Ingaas Lattice-Matched To Inp, Paul J. Simmonds, H W. Li, H E. Beere, P See, A J. Shields, D A. Ritchie

Paul J. Simmonds

The authors report the results of a detailed study of the effect of growth conditions, for molecular beam epitaxy, on the structural and optical properties of self-assembled InAs quantum dots (QDs) on In0.524Al0.476As. InAs QDs both buried in, and on top of, In0.524Al0.476As were analyzed using photoluminescence (PL) and atomic force microscopy. InAs QD morphology and peak PL emission wavelength both scale linearly with deposition thickness in monolayers (MLs). InAs deposition thickness can be used to tune QD PL wavelength by 170 nm/ML, over a range of ...