Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Other Electrical and Computer Engineering

Bradley D. Duncan

Articles 1 - 3 of 3

Full-Text Articles in Physics

Coupling Efficiencies For General Target Illumination Ladar Systems Incorporating Single Mode Optical Fiber Receivers, Christopher Brewer, Bradley Duncan, Kenneth Barnard, Edward Watson Nov 2015

Coupling Efficiencies For General Target Illumination Ladar Systems Incorporating Single Mode Optical Fiber Receivers, Christopher Brewer, Bradley Duncan, Kenneth Barnard, Edward Watson

Bradley D. Duncan

A rigorous method for modeling received power coupling efficiency (ηF/R) and transmitted power coupling efficiency (ηF/T) in a general-target-illumination ladar system is presented. For our analysis we concentrate on incorporating a single-mode optical fiber into the ladar return signal path. By developing expressions for both ηF/R and ηF/T for a simple, diffuse target, our model allows for varying range, beam size on target, target diameter, and coupling optics. Through numerical analysis ηF/R is shown to increase as the range to target increases and decrease as target diameter increases, and ηF/T is shown to decrease ...


Space-Bandwidth Product Enhancement Of A Monostatic, Multi-Aperture Infrared Image Upconversion Ladar Receiver Incorporating Periodically Polled Linbo3, Christopher Brewer, Bradley Duncan, Phillip Maciejewski, Sean Kirkpatrick, Edward Watson Nov 2015

Space-Bandwidth Product Enhancement Of A Monostatic, Multi-Aperture Infrared Image Upconversion Ladar Receiver Incorporating Periodically Polled Linbo3, Christopher Brewer, Bradley Duncan, Phillip Maciejewski, Sean Kirkpatrick, Edward Watson

Bradley D. Duncan

We investigate the space-bandwidth product of a ladar system incorporating an upconversion receiver. After illuminating a target with an eye-safe beam, we direct the return into a piece of periodically poled LiNbO3 where it is upconverted into the visible spectrum and detected with a CCD camera. The theoretical and experimental transfer functions are then found. We show that the angular acceptance of the upconversion process severely limits the receiver field of regard for macroscopic coupling optics. This limitation is overcome with a pair of microlens arrays, and a 43% increase in the system’s measured space-bandwidth product is demonstrated.


Fibre-Optic Network Architectures For On-Board Digital Avionics Signal Distribution, Mohammad Alam, Mohammed Atiquzzaman, Bradley Duncan, Hung Nguyen, Richard Kunath Nov 2015

Fibre-Optic Network Architectures For On-Board Digital Avionics Signal Distribution, Mohammad Alam, Mohammed Atiquzzaman, Bradley Duncan, Hung Nguyen, Richard Kunath

Bradley D. Duncan

Continued progress in both civil and military radio-frequency (RF) digital avionics applications is overstressing the capabilities and reliability of existing RF communication networks based on coaxial cables on board modern aircrafts. Future avionics systems will require high-bandwidth on-board communication links that are lightweight, immune to electromagnetic interference, and highly reliable. Fibre-optic networks can meet all these challenges in a cost-effective manner. Recently, on-board fibre-optic communication systems, where a fibre-optic network acts like a local area network (LAN) for digital data communications, have become a topic of extensive research and development. However, modern digital avionics systems require a system capable of ...