Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 33

Full-Text Articles in Physics

Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski Dec 2018

Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


A Companion To The Introduction To Modern Dynamics, David D. Nolte Dec 2018

A Companion To The Introduction To Modern Dynamics, David D. Nolte

David D Nolte

A Jr/Sr Mechanics/Dynamics textbook from Oxford University Press, updating how we teach undergraduate physics majors with increased relevance for physics careers in changing times.

Additional materials, class notes and examples to go with the textbook Introduction to Modern Dynamics: Chaos, Networks, Space and Time (Oxford University Press, 2019).

The best parts of physics are the last topics that our students ever see.  These are the exciting new frontiers of nonlinear and complex systems that are at the forefront of university research and are the basis of many of our high-tech businesses.  Topics such as traffic on the World ...


Mach’S Principle In A Mixed Newton-Einstein Context, Evert Jan Post, Michael Berg Jan 2017

Mach’S Principle In A Mixed Newton-Einstein Context, Evert Jan Post, Michael Berg

Michael Berg

A closed physical space, in conjunction with scalar versus pseudo scalar distinctions, and an accordingly adapted Gauss theorem, reveal unexpected perspectives on Mach's principle, the mass-energy theorem, and a bonus insight into the nature of the solutions of the Einstein field equations of gravity.


On Levi-Civita’S Alternating Symbol, Schouten’S Alternating Unit Tensors, Cpt, And Quantization, Evert Jan Post, Stan Sholar, Hooman Rahimizadeh, Michael Berg Jan 2017

On Levi-Civita’S Alternating Symbol, Schouten’S Alternating Unit Tensors, Cpt, And Quantization, Evert Jan Post, Stan Sholar, Hooman Rahimizadeh, Michael Berg

Michael Berg

The purpose of the present article is to demonstrate that by adopting a unifying differential geometric perspective on certain themes in physics one reaps remarkable new dividends in both microscopic and macroscopic domains. By replacing algebraic objects by tensor-transforming objects and introducing methods from the theory of differentiable manifolds at a very fundamental level we obtain a Kottler-Cartan metric-independent general invariance of the Maxwell field, which in turn makes for a global quantum superstructure for Gauss-Amp`ere and Aharonov-Bohm “quantum integrals.” Beyond this, our approach shows that postulating a Riemannian metric at the quantum level is an unnecessary concept and ...


Exotic Statistics For Strings In 4d Bf Theory, John C. Baez, Derek K. Wise, Alissa S. Crans Dec 2016

Exotic Statistics For Strings In 4d Bf Theory, John C. Baez, Derek K. Wise, Alissa S. Crans

Alissa Crans

After a review of exotic statistics for point particles in 3d BF theory, and especially 3d quantum gravity, we show that string-like defects in 4d BF theory obey exotic statistics governed by the 'loop braid group'. This group has a set of generators that switch two strings just as one would normally switch point particles, but also a set of generators that switch two strings by passing one through the other. The first set generates a copy of the symmetric group, while the second generates a copy of the braid group. Thanks to recent work of Xiao-Song Lin, we can ...


Interplay Between Anomalous Transport And Catalytic Reaction Kinetics In Single-File Nanoporous Systems, Dajiang Liu, Jigang Wang, David Ackerman, Igor I. Slowing, Marek Pruski, Hung-Ting Chen, Victor S.-Y. Lin, James W. Evans Mar 2016

Interplay Between Anomalous Transport And Catalytic Reaction Kinetics In Single-File Nanoporous Systems, Dajiang Liu, Jigang Wang, David Ackerman, Igor I. Slowing, Marek Pruski, Hung-Ting Chen, Victor S.-Y. Lin, James W. Evans

Jigang Wang

Functionalized nanoporous materials have broad utility for catalysis applications. However, the kinetics of catalytic reaction processes in these systems can be strongly impacted by the anomalous transport. The most extreme case corresponds to single-file diffusion for narrow pores in which species cannot pass each other. For conversion reactions with a single-file constraint, traditional mean-field-type reaction-diffusion equations fail to capture the initial evolution of concentration profiles, and they cannot describe the scaling behavior of steady-state reactivity. Hydrodynamic reaction-diffusion equations accounting for the single-file aspects of chemical diffusion can describe such initial evolution, but additional refinements are needed to incorporate fluctuation effects ...


Conventions, Definitions, Identities, And Other Useful Formulae, Robert Mcnees Jan 2016

Conventions, Definitions, Identities, And Other Useful Formulae, Robert Mcnees

Robert A McNees IV

As the name suggests, these notes contain a summary of important conventions, definitions, identities, and various formulas that I often refer to. They may prove useful for researchers working in General Relativity, Supergravity, String Theory, Cosmology, and related areas.


Zespół Energii Odnawialnej I Zrównoważonego Rozwoju (Eozr), Wojciech M. Budzianowski Dec 2014

Zespół Energii Odnawialnej I Zrównoważonego Rozwoju (Eozr), Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Spontaneous Oscillations In Simple Fluid Networks, Nathaniel Karst, Brian Storey, John Geddes Jun 2014

Spontaneous Oscillations In Simple Fluid Networks, Nathaniel Karst, Brian Storey, John Geddes

Brian Storey

Nonlinear phenomena including multiple equilibria and spontaneous oscillations are common in fluid networks containing either multiple phases or constituents. In many systems, such behavior might be attributed to the complicated geometry of the network, the complex rheology of the constituent fluids, or, in the case of microvascular blood flow, biological control. In this paper we investigate two examples of a simple three-node fluid network containing two miscible Newtonian fluids of differing viscosities, the first modeling microvascular blood flow and the second modeling stratified laminar flow. We use a combination of analytic and numerical techniques to identify and track saddle-node and ...


Spontaneous Oscillations In Simple Fluid Networks, Nathaniel Karst, Brian Storey, John Geddes Jun 2014

Spontaneous Oscillations In Simple Fluid Networks, Nathaniel Karst, Brian Storey, John Geddes

John B. Geddes

Nonlinear phenomena including multiple equilibria and spontaneous oscillations are common in fluid networks containing either multiple phases or constituents. In many systems, such behavior might be attributed to the complicated geometry of the network, the complex rheology of the constituent fluids, or, in the case of microvascular blood flow, biological control. In this paper we investigate two examples of a simple three-node fluid network containing two miscible Newtonian fluids of differing viscosities, the first modeling microvascular blood flow and the second modeling stratified laminar flow. We use a combination of analytic and numerical techniques to identify and track saddle-node and ...


Composite Fermions And Integer Partitions, Arthur Benjamin, Jennifer Quinn, John Quinn, Arkadiusz Wojs Feb 2014

Composite Fermions And Integer Partitions, Arthur Benjamin, Jennifer Quinn, John Quinn, Arkadiusz Wojs

Jennifer J. Quinn

We utilize the KOH theorem to prove the unimodality of integer partitions with at most a parts, all parts less than or equal to b, that are required to contain either repeated or consecutive parts. We connect this result to an open question in quantum physics relating the number of distinct total angular momentum multiplets of a system of N fermions, each with angular momentum ℓ, to those of a system in which each Fermion has angular momentum ℓ*=ℓ−N+1.


Transformation Of Statistics In Fractional Quantum Hall Systems, John J. Quinn, Arkadiusz Wojs, Jennifer J. Quinn, Arthur T. Benjamin Feb 2014

Transformation Of Statistics In Fractional Quantum Hall Systems, John J. Quinn, Arkadiusz Wojs, Jennifer J. Quinn, Arthur T. Benjamin

Jennifer J. Quinn

A Fermion to Boson transformation is accomplished by attaching to each Fermion a tube carrying a single quantum of flux oriented opposite to the applied magnetic field. When the mean field approximation is made in Haldane’s spherical geometry, the Fermion angular momentum lF is replaced by lB =lF − 1/2 (N −1). The set of allowed total angular momentum multiplets is identical in the two different pictures. The Fermion and Boson energy spectra in the presence of many body interactions are identical only if the pseudopotential V (interaction energy as a function of pair angular momentum L12) increases as ...


Syllabus_Lecture_Notes_Collective_Phenomena_In_Laser_Plasmas_Ii_Phy998_Spring_2014, Serge Y. Kalmykov Dec 2013

Syllabus_Lecture_Notes_Collective_Phenomena_In_Laser_Plasmas_Ii_Phy998_Spring_2014, Serge Y. Kalmykov

Serge Youri Kalmykov

High-power laser radiation beams interacting with a rarefied, fully ionized plasmas are essentially unstable. This fact is mainly due to the excitation of various modes of plasma oscillations, most important of which are electron Langmuir waves and ion acoustic waves. The stimulated scattering processes destroy and deplete the pulse in the as it propagates. On the other hand, at the moderate level of instability, spectral properties of the scattered light may serve as optical diagnostics of the pulse propagation dynamics. Knowing the dynamics of the stimulated scattering processes is thus essential for such applications as inertial confinement fusion and laser-plasma ...


On Random Time And On The Relation Between Wave And Telegraph Equations, Ramakrishna Janaswamy Apr 2013

On Random Time And On The Relation Between Wave And Telegraph Equations, Ramakrishna Janaswamy

Ramakrishna Janaswamy

Kac’s conjecture relating the solution of wave and telegraph equations in higher dimensions through a Poisson process-driven random time is established through the concepts of stochastic calculus. New expression is derived for the probability density function of the random time. We demonstrate how the relationship between the solution of a lossy wave- and that of a lossless wave equation can be exploited to derive some statistical identities. Relevance of the results presented to the study of pulse propagation in a dispersive medium characterized by a Lorentz or Drude model is discussed and new evolution equations for 2D Maxwell’s ...


Electrical Current In Sinai Billiards Under General Small Forces, Pengfei Zhang Dec 2012

Electrical Current In Sinai Billiards Under General Small Forces, Pengfei Zhang

Pengfei Zhang

No abstract provided.


Determination Of Kinetic Parameters From The Thermogravimetric Data Set Of Biomass Samples, Karol Postawa, Wojciech M. Budzianowski Dec 2012

Determination Of Kinetic Parameters From The Thermogravimetric Data Set Of Biomass Samples, Karol Postawa, Wojciech M. Budzianowski

Wojciech Budzianowski

This article describes methods of the determination of kinetic parameters from the thermogravimetric data set of biomass samples. It presents the methodology of the research, description of the needed equipment, and the method of analysis of thermogravimetric data. It describes both methodology of obtaining quantitative data such as kinetic parameters as well as of obtaining qualitative data like the composition of biomass. The study is focused mainly on plant biomass because it is easy in harvesting and preparation. Methodology is shown on the sample containing corn stover which is subsequently pyrolysed. The investigated sample show the kinetic of first order ...


Average Output Entropy For Quantum Channels, Christopher King, David K. Moser Apr 2012

Average Output Entropy For Quantum Channels, Christopher King, David K. Moser

Christopher King

We study the regularized average Renyi output entropy r reg of quantum channels. This quantity gives information about the average noisiness of the channel output arising from a typical, highly entangled input state in the limit of infinite dimensions. We find a closed expression for βr reg , a quantity which we conjecture to be equal to r reg . We find an explicit form for βr reg for some entanglement-breaking channels and also for the qubit depolarizing channel Δλ as a function of the parameter λ. We prove equality of the two quantities in some cases, in particular, we conclude that ...


On The Influence Of Damping In Hyperbolic Equations With Parabolic Degeneracy, Ralph Saxton, Katarzyna Saxton Dec 2011

On The Influence Of Damping In Hyperbolic Equations With Parabolic Degeneracy, Ralph Saxton, Katarzyna Saxton

Ralph Saxton

This paper examines the effect of damping on a nonstrictly hyperbolic 2x2 system. It is shown that the growth of singularities is not restricted as in the strictly hyperbolic case where dissipation can be strong enough to preserve the smoothness of solutions globally in time. Here, irrespective of the stabilizing properties of damping, solutions are found to break down in finite time on a line where two eigenvalues coincide in state space.


Nonlinear Waves And Solitons On Contours And Closed Surfaces, Andrei Ludu Dec 2011

Nonlinear Waves And Solitons On Contours And Closed Surfaces, Andrei Ludu

Andrei Ludu

No abstract provided.


Hydrogen Production From Biogas By Oxy-Reforming: Reaction System Analysis, Aleksandra Terlecka, Wojciech M. Budzianowski Dec 2011

Hydrogen Production From Biogas By Oxy-Reforming: Reaction System Analysis, Aleksandra Terlecka, Wojciech M. Budzianowski

Wojciech Budzianowski

Oxy-reforming is emerging as an interesting alternative to conventional methods of hydrogen generation. The current article characterises this process through analysis of individual reactions: SMR (steam methane reforming), WGS (water gas shift) and CPO (catalytic partial oxidation). Analyses relate to optimisation of thermal conditions thus enabling cost-effectivenes of the process.


Boundary Effects In Large-Aspect-Ratio Lasers, G.K. Harkness, W.J. Firth, John B. Geddes, J.V Moloney, E.M. Wright Oct 2011

Boundary Effects In Large-Aspect-Ratio Lasers, G.K. Harkness, W.J. Firth, John B. Geddes, J.V Moloney, E.M. Wright

John B. Geddes

We study theoretically the effect of transverse boundary conditions on the traveling waves foundin infinitely extended and positively detuned laser systems. We find that for large-aspect-ratiosystems, well above threshold and away from the boundaries, the traveling waves persist. Sourceand sink defects are observed on the boundaries, and in very-large-aspect-ratio systems these defectscan also exist away from the boundaries. The transverse size of the sink defect, relative to the sizeof the transverse domain, is important in determining the final pattern observed, and so, close tothreshold, standing waves are always observed.


Fractional Trigonometric Functions In Complex-Valued Space: Applications Of Complex Number To Local Fractional Calculus Of Complex Function, Yang Xiao-Jun Jun 2011

Fractional Trigonometric Functions In Complex-Valued Space: Applications Of Complex Number To Local Fractional Calculus Of Complex Function, Yang Xiao-Jun

Xiao-Jun Yang

This paper presents the fractional trigonometric functions in complex-valued space and proposes a short outline of local fractional calculus of complex function in fractal spaces.


Transitional Probabilities For The Four-State Random Walk On A Lattice In The Presence Of Partially Reflecting Boundaries, Ramakrishna Janaswamy Mar 2009

Transitional Probabilities For The Four-State Random Walk On A Lattice In The Presence Of Partially Reflecting Boundaries, Ramakrishna Janaswamy

Ramakrishna Janaswamy

The four-state random walk (4RW) model, wherein the particle is endowed with two states of spin and two states of directional motion in each space coordinate, permits a stochastic solution of the Schrödinger equation (or the equivalent parabolic equation) without resorting to the usual analytical continuation in complex space of the particle trajectories. Analytical expressions are derived here for the various transitional probabilities in a 4RW by employing generating functions and eigenfunction expansions when the particle moves on a 1+1 space-time lattice with two-point boundary conditions. The most general case of dissimilar boundaries with partially reflecting boundary conditions is ...


Problems Of Local Fractional Definite Integral Of The One-Variable Non-Differentiable Function, Yang Xiao-Jun Dec 2008

Problems Of Local Fractional Definite Integral Of The One-Variable Non-Differentiable Function, Yang Xiao-Jun

Xiao-Jun Yang

It is proposed that local fractional calculas introduced by Kolwankar and Gangal is extended by the concept of Jumarie’s fractional calculus and local fractional definite integral is redefined. The properties and the theorems of local fractional calculus are discussed in this paper.


Thermal Roots Of Correlation-Based Complexity, Philip Fraundorf Dec 2007

Thermal Roots Of Correlation-Based Complexity, Philip Fraundorf

Phil Fraundorf

Bayesian maxent lets one integrate thermal physics and information theory points of view in the quantitative study of complex systems. Since net surprisal (a free energy analog for measuring “departures from expected”) allows one to place second law constraints on mutual information (a multimoment measure of correlations), it makes a quantitative case for the role of reversible thermalization in the natural history of invention, and suggests multiscale strategies to monitor standing crop as well. It prompts one to track evolved complexity starting from live astrophysically observed processes, rather than only from evidence of past events. Various gradients and boundaries that ...


Analysis And Classification Of Nonlinear Dispersive Evolution Equations In The Potential Representation, Andrei Ludu Dec 2001

Analysis And Classification Of Nonlinear Dispersive Evolution Equations In The Potential Representation, Andrei Ludu

Andrei Ludu

No abstract provided.


Topology And Metastability In The Lattice Skyrme Model, Alec Schramm, Benjamin Svetitsky Nov 2000

Topology And Metastability In The Lattice Skyrme Model, Alec Schramm, Benjamin Svetitsky

Alec J Schramm

We offer the Skyrme model on a lattice as an effective field theory—fully quantized—of baryon-meson interactions at temperatures below the chiral phase transition. We define a local topological density that involves the volumes of tetrahedra in the target space S3 and we make use of Coxeter’s formula for the Schläfli function to implement it. This permits us to calculate the mean-square radius of a Skyrmion in the three-dimensional lattice Skyrme model, which may be viewed as a Ginzburg-Landau effective theory for the full quantum theory at finite temperature. We find that, contrary to expectations, the Skyrmion shrinks ...


A Nonlinear Deformed Su(2) Algebra With A Two-Color Quasitriangular Hopf Structure, Andrei Ludu Dec 1996

A Nonlinear Deformed Su(2) Algebra With A Two-Color Quasitriangular Hopf Structure, Andrei Ludu

Andrei Ludu

No abstract provided.


Su(1,1) Algebraic Description Of One-Dimensional Potentials Within The R-Matrix Theory, Andrei Ludu Dec 1995

Su(1,1) Algebraic Description Of One-Dimensional Potentials Within The R-Matrix Theory, Andrei Ludu

Andrei Ludu

No abstract provided.


Generalization Kdv Equation For Fluid Dynamics And Quantum Algebras, Andrei Ludu Dec 1995

Generalization Kdv Equation For Fluid Dynamics And Quantum Algebras, Andrei Ludu

Andrei Ludu

No abstract provided.