Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Condensed Matter Physics

Antiferromagnetism

Articles 1 - 2 of 2

Full-Text Articles in Physics

Tailoring The Asymmetric Magnetoimpedance Response In Exchange-Biased Ni - Fe Multilayers, Ufuk Kilic, Carolina Ross, Carlos Garcia Sep 2018

Tailoring The Asymmetric Magnetoimpedance Response In Exchange-Biased Ni - Fe Multilayers, Ufuk Kilic, Carolina Ross, Carlos Garcia

Ufuk Kilic

The dependence of the asymmetric magnetoimpedance (MI) response on the directions of both the magnetic field and the exchange bias is studied for an [NiFe(60nm)/IrMn(35nm)]×5 multilayer system. The antiferromagnetic (AFM) layers create an exchange bias that shifts both the hysteresis loop and the MI response of NiFe; the strength of this coupling depends on the thicknesses of both the ferromagnetic layer and the AFM layer. Tuning the exchange-bias angle and the applied-magnetic-field direction provides a practical method to control the symmetry and the magnitude of the MI response. The observed asymmetric response can ...


Unsupervised Machine Learning Account Of Magnetic Transitions In The Hubbard Model, Kelvin Ch'ng, Nick Vazquez, Ehsan Khatami Dec 2017

Unsupervised Machine Learning Account Of Magnetic Transitions In The Hubbard Model, Kelvin Ch'ng, Nick Vazquez, Ehsan Khatami

Ehsan Khatami

We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t-distributed stochastic neighboring ensemble (t-SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and physical ...