Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Physics

Revisiting Galvanomagnetic Effects In Conducting Ferromagnets, Raymond T. Walter, Michel Viret, Surendra Singh, Laurent Bellaiche Oct 2014

Revisiting Galvanomagnetic Effects In Conducting Ferromagnets, Raymond T. Walter, Michel Viret, Surendra Singh, Laurent Bellaiche

Raymond Walter

 The recently proposed coupling between the angular momentum density and magnetic
moments is shown to provide a straightforward alternative explanation for galvanomagnetic
effects, i.e. for both anisotropic magnetoresistance (AMR) and planar Hall effect (PHE). Such
coupling naturally reproduces the general formula associated with AMR and PHE and allows
for the occurrence of so-called ‘negative AMR’. This coupling also provides a unifying link
between AMR, PHE and the anomalous Hall effect (AHE) since this same coupling was
previously found to give rise to AHE (Bellaiche et al  2013 Phys. Rev.  B 88 161102 ).


Rhodizonic Acid On Noble Metals: Surface Reactivity And Coordination Chemistry, Donna A. Kunkel, James Hooper, Scott Simpson, Sumit Beniwal, Katie L. Morrow, Douglas C. Smith, Kimberly Cousins, Stephen Ducharme, Eva Zurek, Axel Enders Sep 2014

Rhodizonic Acid On Noble Metals: Surface Reactivity And Coordination Chemistry, Donna A. Kunkel, James Hooper, Scott Simpson, Sumit Beniwal, Katie L. Morrow, Douglas C. Smith, Kimberly Cousins, Stephen Ducharme, Eva Zurek, Axel Enders

Axel Enders

A study of the two-dimensional crystallization of rhodizonic acid on the crystalline surfaces of gold and copper is presented. Rhodizonic acid, a cyclic oxocarbon related to the ferroelectric croconic acid and the antiferroelectric squaric acid, has not been synthesized in bulk crystalline form yet. Capitalizing on surface-assisted molecular self-assembly, a two-dimensional analogue to the well-known solution-based coordination chemistry, two-dimensional structures of rhodizonic acid were stabilized under ultrahigh vacuum on Au(111) and Cu(111) surfaces. Scanning tunneling microscopy, coupled with first-principles calculations, reveals that on the less reactive Au surface, extended two-dimensional islands of rhodizonic acid are formed, in which ...


Ferromagnetic Granular Exchange Interactions Of Nickel And Iron, Ken Podolak Aug 2014

Ferromagnetic Granular Exchange Interactions Of Nickel And Iron, Ken Podolak

Dr. Ken Podolak

Micromagnetic grains of nickel and iron were blended to investigate whether the magnetic exchange interaction was significant to produce a bulk result in a measured deflection by a fixed applied magnetic field. The results follow the same trend as Slater-Pauling's magnetization density calculations for nickel iron films, most notably a stronger following with a finer grain. Furthermore, by adding chromium into nickel and iron blends, the Invar minimum shifts toward less iron in nickel. Hysteresis was determined for the same samples through a homemade vibrating sample magnetometer (VSM). Areas of each loop are determined that show a minimum around ...


Investigation Of Carrier Transit Motion In Pcdtbt By Optical Shg Technique, Shahino Mah Abdullah Aug 2014

Investigation Of Carrier Transit Motion In Pcdtbt By Optical Shg Technique, Shahino Mah Abdullah

Shahino Mah Abdullah

We analyze the carrier transit behavior in poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT), which has been reported as a donor material for efficient bulk hetero junction photovolatic devices. The transfer and transient carrier mobilities in the PCDTBT thin films have been measured and analyzed. The transfer mobility has been measured by the transfer curve of the OFET, whereas, the transient mobility is recorded using a time-resolved electric-field-induced optical second-harmonic-generation (TRM-SHG) technique. Using TRM-SHG technique, the dynamic motion of the charge carriers in the PCDTBT thin films has been directly visualized. We anticipate that the ...


17o And 51v Nmr For The Zigzag Spin-1 Chain Compound Cav2o4, X. Zong, B. J. Suh, A. Niazi, J.-Q. Yan, Deborah L. Schlagel, Thomas A. Lograsso, David C. Johnston Aug 2014

17o And 51v Nmr For The Zigzag Spin-1 Chain Compound Cav2o4, X. Zong, B. J. Suh, A. Niazi, J.-Q. Yan, Deborah L. Schlagel, Thomas A. Lograsso, David C. Johnston

Deborah L. Schlagel

51V NMR studies on CaV2O4 single crystals and 17O NMR studies on 17O-enriched powder samples are reported. The temperature dependences of the 17O NMR linewidth and nuclear spin-lattice relaxation rate give strong evidence for a long-range antiferromagnetic transition at TN=78 K in the powder. Magnetic susceptibility measurements show that TN=69 K in the crystals. A zero-field 51V NMR signal was observed at low temperatures (f≈237 MHz at 4.2 K) in the crystals. The field-swept spectra with the field in different directions suggest the presence of two antiferromagnetic substructures. Each substructure is collinear, with the easy axes ...


Relation Between Ga Ordering And Magnetostriction Of Fe-Ga Alloys Studied By X-Ray Diffuse Scattering, Y. Du, Mianliang Huang, S. Chang, Deborah L. Schlagel, Thomas A. Lograsso, Robert J. Mcqueeney Aug 2014

Relation Between Ga Ordering And Magnetostriction Of Fe-Ga Alloys Studied By X-Ray Diffuse Scattering, Y. Du, Mianliang Huang, S. Chang, Deborah L. Schlagel, Thomas A. Lograsso, Robert J. Mcqueeney

Deborah L. Schlagel

Transmission synchrotron diffraction was employed to characterize the Ga ordering in magnetostrictive Fe100−xGax alloys with Ga concentrations from 0 to 20.3 at. %. The experiments focused on the development of atomic short-range ordering (SRO) by analysis of the diffuse scattering appearing at superlattice positions of the D03 ordered alloy structure. No SRO was found for Ga concentrations less than 4 at. %. Between 13 and 20.3 at. %, D03-type SRO clusters are observed whose size increases with Ga concentration for both slow-cooled and quenched samples. Thermal quenching of the samples suppresses the cluster sizes when compared to slow-cooled samples of ...


The Jahn–Teller Effect And Electron–Phonon Interaction In La0.25ca0.75mn1−Xcrxo3, H. Zhou, G. Li, H. Chen, R. Zheng, Xiaojuan Fan, X. Li Jun 2014

The Jahn–Teller Effect And Electron–Phonon Interaction In La0.25ca0.75mn1−Xcrxo3, H. Zhou, G. Li, H. Chen, R. Zheng, Xiaojuan Fan, X. Li

Xiaojuan Fan

The ultrasonic (longitudinal and transverse) velocities and the transport and magnetic properties of polycrystalline La0.25Ca0.75Mn1-xCrxO3 (x = 0, 0.03, 0.05, and 0.07) have been studied systematically. It was found that with increasing Cr content, the resistivity increases, the charge-ordering transition temperature TCO shifts to low temperature, and the magnetic moment of the system is strengthened. From the temperature dependence of the ultrasonic velocities, one can establish that the Jahn-Teller energy and phonon exchange constant decrease with increasing Cr content.


Investigation Of Charge Transport In Organic Polymer Donor/Acceptor Photovolatic Materials, Zubair Ahmad, Shahino Mah Abdullah, Khaulah Sulaiman Apr 2014

Investigation Of Charge Transport In Organic Polymer Donor/Acceptor Photovolatic Materials, Zubair Ahmad, Shahino Mah Abdullah, Khaulah Sulaiman

Zubair Ahmad

Pi-conjugated organic semiconductors have long been used as either holes or electrons transport materials. Recently ambipolar charge carrier transport in these materials have been reported in many investigations. In this paper, we report on the basis of experimental results that the organic semiconductor (donor/acceptor) materials can be as good electrons transporters as these materials are holes transporters. In our study, the solution-processed unipolar diodes based on organic materials P3HT, VOPCPhO and their blends with PCBM have been fabricated. The I-V characteristics of these diodes have been analyzed in the space charge limited current regime. The values of the electron ...


Spin Transfer Of Quantum Information Between Majorana Modes And A Resonator, Alexey Kovalev Mar 2014

Spin Transfer Of Quantum Information Between Majorana Modes And A Resonator, Alexey Kovalev

Alexey Kovalev

No abstract provided.


Absorption Of Microwaves In La1Àxsrxmno3 Manganese Powders Over A Wide Bandwidth, G. Li, G. G. Hu, H. D. Zhou, Xiaojuan Fan, X. G. Li Feb 2014

Absorption Of Microwaves In La1Àxsrxmno3 Manganese Powders Over A Wide Bandwidth, G. Li, G. G. Hu, H. D. Zhou, Xiaojuan Fan, X. G. Li

Xiaojuan Fan

We present the frequency dependence of microwave-absorbing properties of La1-xSrxMnO3 (x=0.4, 0.5, 0.6, and 0.7) powders at room temperature. The absorbing properties change gradually with x in the frequency range of 8–12 GHz. The optimal absorption can be achieved for a x=0.4 sample and its microwave loss peak value is about 25 dB. Further experimental results show that the absorption can be attributed to magnetic and dielectric losses and the microwave loss peak corresponds to the maximum dielectric loss tangent tan δe near 10.5 GHz ...


Competition Between Ferromagnetic Metallic And Paramagnetic Insulating Phases In Manganites, G. Li, H. Zhou, S. Feng, Xiaojuan Fan, X. Li, Z. Wang Feb 2014

Competition Between Ferromagnetic Metallic And Paramagnetic Insulating Phases In Manganites, G. Li, H. Zhou, S. Feng, Xiaojuan Fan, X. Li, Z. Wang

Xiaojuan Fan

La0.67Ca0.33Mn1−xCuxO3(x=0 and 0.15) epitaxial thin films were grown on the (100) LaAlO3 substrates, and the temperature dependence of their resistivity was measured in magnetic fields up to 12 T by a four-probe technique. We found that the competition between the ferromagnetic metallic (FM) and paramagnetic insulating (PI) phases plays an important role in the observed colossal magnetoresistance(CMR) effect. Based on a scenario that the doped manganites approximately consist of phase-separated FM and PI regions, a simple phenomenological model was proposed to describe the CMR effect. Using this model, we calculated the resistivity as ...


Transport Evidence Of Robust Topological Surface State In Bitecl Single Crystals, The First Strong Inversion Asymmetric Topological Insulator, F Xiang Jan 2014

Transport Evidence Of Robust Topological Surface State In Bitecl Single Crystals, The First Strong Inversion Asymmetric Topological Insulator, F Xiang

F X Xiang

Three-dimensional (3D) topological insulators (TIs) are new forms of quantum matter that are characterized by their insulating bulk state and exotic metallic surface state, which hosts helical Dirac fermions1-2. Very recently, BiTeCl, one of the polar semiconductors, has been discovered by angle-resolved photoemission spectroscopy to be the first strong inversion asymmetric topological insulator (SIATI). In contrast to the previously discovered 3D TIs with inversion symmetry, the SIATI are expected to exhibit novel topological phenomena, including crystalline-surface-dependent topological surface states, intrinsic topological p-n junctions, and pyroelectric and topological magneto-electric effects3. Here, we report the first transport evidence for the robust topological ...


Bulk Fermi Surface And Momentum Density In Heavily Doped La₂₋ₓSrₓCuo₄ Using High-Resolution Compton Scattering And Positron Annihilation Spectroscopies, W. Al-Sawai, B. Barbiellini, Y. Sakurai, M. Itou, P. E. Mijnarends, R. S. Markiewicz, S. Kaprzyk, S. Wakimoto, M. Fujita, S. Basak, H. Lin, Yung Jui Wang, S. W. H. Eijt, H. Schut, K. Yamada, A. Bansil Jan 2014

Bulk Fermi Surface And Momentum Density In Heavily Doped La₂₋ₓSrₓCuo₄ Using High-Resolution Compton Scattering And Positron Annihilation Spectroscopies, W. Al-Sawai, B. Barbiellini, Y. Sakurai, M. Itou, P. E. Mijnarends, R. S. Markiewicz, S. Kaprzyk, S. Wakimoto, M. Fujita, S. Basak, H. Lin, Yung Jui Wang, S. W. H. Eijt, H. Schut, K. Yamada, A. Bansil

Hsin Lin

We have observed the bulk Fermi surface (FS) in an overdoped (x=0.3) single crystal of La₂₋ₓSrₓCuO₄ by using Compton scattering. A two-dimensional (2D) momentum density reconstruction from measured Compton profiles yields a clear FS signature in the third Brillouin zone along [100]. The quantitative agreement between density functional theory (DFT) calculations and momentum density experiment suggests that Fermi-liquid physics is restored in the overdoped regime. In particular the predicted FS topology is found to be in good accord with the corresponding experimental data. We find similar quantitative agreement between the measured 2D angular correlation of positron annihilation ...


Fermi-Surface Topology And Low-Lying Electronic Structure Of The Iron-Based Superconductor Ca₁₀(Pt₃As₈)(Fe₂As₂)₅, Madhab Neupane, Chang Liu, Su-Yang Xu, Yung-Jui Wang, Ni Ni, J. Allred, N. Alidoust, Hsin Lin, R. Markiewicz, A. Bansil, R. Cava, M. Hasan Jan 2014

Fermi-Surface Topology And Low-Lying Electronic Structure Of The Iron-Based Superconductor Ca₁₀(Pt₃As₈)(Fe₂As₂)₅, Madhab Neupane, Chang Liu, Su-Yang Xu, Yung-Jui Wang, Ni Ni, J. Allred, N. Alidoust, Hsin Lin, R. Markiewicz, A. Bansil, R. Cava, M. Hasan

Hsin Lin

We report a study of low-energy electronic structure and Fermi surface topology for the recently discovered iron-based superconductor Ca₁₀(Pt₃As₈)(Fe₂As₂)₅(the 10-3-8 phase, with Tc∼8 K), via angle-resolved photoemission spectroscopy (ARPES). Despite its triclinic crystal structure, ARPES results reveal a fourfold symmetric band structure with the absence of Dirac-cone-like Fermi dots (related to magnetism) found around the Brillouin zone corners in other iron-based superconductors. Considering that the triclinic lattice and structural supercell arise from the Pt₃As₈ intermediary layers, these results indicate that those layers couple only weakly to the FeAs layers in this new superconductor at least ...


X-Ray Structure, Thermodynamics, Elastic Properties And Mdsimulations Of Cardiolipin/Dimyristoylphosphatidylcholine Mixedmembranes, Alex Boscia, Bradley Treece, Dariush Mohammadyani, Judith Klein-Seetharaman, Anthony Braun, Beate Kloesgen, Tsjerk Wassenaar, Stephanie Tristram-Nagle Dec 2013

X-Ray Structure, Thermodynamics, Elastic Properties And Mdsimulations Of Cardiolipin/Dimyristoylphosphatidylcholine Mixedmembranes, Alex Boscia, Bradley Treece, Dariush Mohammadyani, Judith Klein-Seetharaman, Anthony Braun, Beate Kloesgen, Tsjerk Wassenaar, Stephanie Tristram-Nagle

Prof. Stephanie Tristram-Nagle Ph.D.

tCardiolipins (CLs) are important biologically for their unique role in biomembranes that couple phos-phorylation and electron transport like bacterial plasma membranes, chromatophores, chloroplasts andmitochondria. CLs are often tightly coupled to proteins involved in oxidative phosphorylation. The firststep in understanding the interaction of CL with proteins is to obtain the pure CL structure, and the struc-ture of mixtures of CL with other lipids. In this work we use a variety of techniques to characterize the fluidphase structure, material properties and thermodynamics of mixtures of dimyristoylphosphatidylcholine(DMPC) with tetramyristoylcardiolipin (TMCL), both with 14-carbon chains, at several mole percentages.X-ray diffuse scattering was ...


Shaping Carbon Nanotube Forests For Field Emission, Ben Pound Dec 2013

Shaping Carbon Nanotube Forests For Field Emission, Ben Pound

Ben Pound

No abstract provided.