Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Purdue University

2016

Discipline
Keyword
Publication
Publication Type

Articles 1 - 30 of 42

Full-Text Articles in Physics

Combinatorial Algorithms For Perturbation Theory And Application On Quantum Computing, Yudong Cao Dec 2016

Combinatorial Algorithms For Perturbation Theory And Application On Quantum Computing, Yudong Cao

Open Access Dissertations

Quantum computing is an emerging area between computer science and physics. Numerous problems in quantum computing involve quantum many-body interactions. This dissertation concerns the problem of simulating arbitrary quantum many-body interactions using realistic two-body interactions. To address this issue, a general class of techniques called perturbative reductions (or perturbative gadgets) is adopted from quantum complexity theory and in this dissertation these techniques are improved for experimental considerations. The idea of perturbative reduction is based on the mathematical machinery of perturbation theory in quantum physics. A central theme of this dissertation is then to analyze the combinatorial structure of the perturbation …


Gravity-Assist Trajectories To Venus, Mars, And The Ice Giants: Mission Design With Human And Robotic Applications, Kyle M. Hughes Dec 2016

Gravity-Assist Trajectories To Venus, Mars, And The Ice Giants: Mission Design With Human And Robotic Applications, Kyle M. Hughes

Open Access Dissertations

Gravity-assist trajectories to Uranus and Neptune are found (with the allowance of impulsive maneuvers using chemical propulsion) for launch dates ranging from 2024 to 2038 for Uranus and 2020 to 2070 for Neptune. Solutions are found using a patched conic model with analytical ephemeris via the Satellite Tour Design Program (STOUR), originally developed at the Jet Propulsion Laboratory (JPL). Delivered payload mass is computed for all solutions for select launch vehicles, and attractive solutions are identified as those that deliver a specified amount of payload mass into orbit at the target body in minimum time. The best cases for each …


Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum Dec 2016

Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum

Open Access Dissertations

In the past decade, there have been many breakthroughs in the field of plasmonics and nanophotonics that have enabled optical devices with unprecedented functionalities. Even though remarkable demonstration of at photonic devices has been reported, constituent materials are limited to the noble metals such as gold (Au) and silver (Ag) due to their abundance of free electrons which enable the support of plasmon resonances in the visible range. With the strong demand for extension of the optical range of plasmonic applications, it is now a necessity to explore and develop alternative materials which can overcome intrinsic issues of noble metals …


The Search For Dark Matter In Xenon: Innovative Calibration Strategies And Novel Search Channels, Shayne Edward Reichard Dec 2016

The Search For Dark Matter In Xenon: Innovative Calibration Strategies And Novel Search Channels, Shayne Edward Reichard

Open Access Dissertations

The direct detection dark matter experiment XENON1T became operational in early 2016, heralding the era of tonne-scale dark matter detectors. Direct detection experiments typically search for elastic scatters of dark matter particles off target nuclei. XENON1T's larger xenon target provides the advantage of stronger dark matter signals and lower background rates compared to its predecessors, XENON10 and XENON100; but, at the same time, calibration of the detector's response to backgrounds with traditional external sources becomes exceedingly more difficult.

A 220Rn source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid …


Dynamic Holography In Semiconductors And Biomedical Optics, Hao Sun Dec 2016

Dynamic Holography In Semiconductors And Biomedical Optics, Hao Sun

Open Access Dissertations

Three-dimensional scanning and display are rapidly-advancing new technologies with important commercial drivers such as 3D printing and remote imaging for big data applications. Holography is a natural approach to recording and displaying three-dimensional information because it uses phase-sensitive interferometry to record interference patterns when a reference beam encounters coherent light arriving from an object. The 3D information is contained in the values of wave optics. Holography is a broad field that goes beyond recording and displaying. For instance, holographic optical elements, which take advantage of holographic imaging principles, perform the functions of lenses, gratings or mirrors. Holographic interferometry is also …


Wave Propagation And Imaging In Structured Optical Media, Zun Huang Dec 2016

Wave Propagation And Imaging In Structured Optical Media, Zun Huang

Open Access Dissertations

Structured optical media, usually characterized by periodic patterns of inhomogeneities in bulk materials, provide a new approach to ultimate control of wave propagation with possible practical applications: from distributed feedback lasers by diffraction gratings, to highly nonlinear performance for super-continuum generation, to fiber-optic telecommunications by microstructured photonic crystal fibers, to invisibility cloaking, to super-resolution imaging with metamaterials etc.

In particular, structured optical media allow to manipulate the wave propagation and dispersion. In this thesis, we focus on engineering the propagation phase dispersion by modulating the compositions and dimensions of the periodic elements. By tailoring the dispersion in momentum space, we …


Modeling The Impact Of Land Surface Feedbacks On Post Landfall Tropical Cyclones, Subashini Subramanian Dec 2016

Modeling The Impact Of Land Surface Feedbacks On Post Landfall Tropical Cyclones, Subashini Subramanian

Open Access Dissertations

The land surface is an important component of numerical models. The land surface models are modules that control energy partitioning, compute surface exchange coefficients and form the only physical boundary in a regional scale numerical model. Thus, an accurate representation of land surface is critical to compute surface fluxes, represent the boundary layer evolution and affect changes in weather systems. Land surface can affect landfalling tropical cyclones in two ways: (i) when the cyclone is offshore and land can influence cyclones by introducing dry (or moist) air that can weaken (or strengthen) the organized convective structure of cyclones, and (ii) …


Thermodynamic Calculation Of The Liquidus Surface Projection Of Multi-Component Aluminum Alloys, Jingrui Zhao, Yong Du, Lijun Zhang, Jixue Zhou, Yuansheng Yang Oct 2016

Thermodynamic Calculation Of The Liquidus Surface Projection Of Multi-Component Aluminum Alloys, Jingrui Zhao, Yong Du, Lijun Zhang, Jixue Zhou, Yuansheng Yang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


An Antireflective Tco Film For Czts Solar Cells, Feng Zhan Oct 2016

An Antireflective Tco Film For Czts Solar Cells, Feng Zhan

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


A Measuring Method For Abundance Of Uranium Components Based On Active Source Of Neutron, Li Li, Gen Hu, Keqi Liu Oct 2016

A Measuring Method For Abundance Of Uranium Components Based On Active Source Of Neutron, Li Li, Gen Hu, Keqi Liu

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


To Prepare Silica Soda Borate Glass From Biomass Ash And Study Its Optical Properties, Seema Ubale, Shraddha Bansod Oct 2016

To Prepare Silica Soda Borate Glass From Biomass Ash And Study Its Optical Properties, Seema Ubale, Shraddha Bansod

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Bio-Assembled Nano-Composites As High-Density Energy Storage Materials, Xixiang Zhang, Yingbang Yao Oct 2016

Bio-Assembled Nano-Composites As High-Density Energy Storage Materials, Xixiang Zhang, Yingbang Yao

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Dem-Cfd Numerical Simulation And Experimental Validation Of Heat Transfer And Two-Component Flow In Fluidized Bed, Feihong Guo Oct 2016

Dem-Cfd Numerical Simulation And Experimental Validation Of Heat Transfer And Two-Component Flow In Fluidized Bed, Feihong Guo

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Thermoelectric Magnetohydrodynamic Effects In Solidification Processes, Andrew Kao, Koulis Pericleous, Peter Lee, Biao Cai, Jianrong Gao Oct 2016

Thermoelectric Magnetohydrodynamic Effects In Solidification Processes, Andrew Kao, Koulis Pericleous, Peter Lee, Biao Cai, Jianrong Gao

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Piezoelectric And Dielectric Behaviour Of Odd Nylon Blends, Shilpa A. Pande Oct 2016

Piezoelectric And Dielectric Behaviour Of Odd Nylon Blends, Shilpa A. Pande

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


High Speed X-Ray Phase Contrast Imaging Of Energetic Composites Under Dynamic Compression, Niranjan D. Parab, Zane A. Roberts, Michael H. Harr, Jesus O. Mares, Alex D. Casey, I. Emre Gunduz, Matthew Hudspeth, Benjamin Claus, Tao Sun, Kamel Fezzaa, Steven F. Son, Weinong W. Chen Sep 2016

High Speed X-Ray Phase Contrast Imaging Of Energetic Composites Under Dynamic Compression, Niranjan D. Parab, Zane A. Roberts, Michael H. Harr, Jesus O. Mares, Alex D. Casey, I. Emre Gunduz, Matthew Hudspeth, Benjamin Claus, Tao Sun, Kamel Fezzaa, Steven F. Son, Weinong W. Chen

Purdue Energetics Research Center Articles

Fracture of crystals and frictional heating are associated with the formation of “hot spots” (localized heating) in energetic composites such as polymer bonded explosives (PBXs). Traditional high speed optical imaging methods cannot be used to study the dynamic sub-surface deformation and the fracture behavior of such materials due to their opaque nature. In this study, high speed synchrotron X-ray experiments are conducted to visualize the in situ deformation and the fracture mechanisms in PBXs composed of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and hydroxyl-terminated polybutadiene binder doped with iron (III) oxide. A modified Kolsky bar apparatus was used to apply controlled dynamic compression …


Particle Swarm Transport In Porous Media, Alison R. Hoe, Laura J Pyrak-Nolte Aug 2016

Particle Swarm Transport In Porous Media, Alison R. Hoe, Laura J Pyrak-Nolte

The Summer Undergraduate Research Fellowship (SURF) Symposium

In recent years, interest in particulate transport in the subsurface has increased with the increased use of micro-particulates in consumer products. In this research, we study particulate swarm transport through porous media that depends on the complexity of the flow paths, on the size and shape of the particles and on the physical interactions among the particles, fluids, and matrix. Specifically, we investigate the effect of pore geometry and grain wettability on swarm evolution under gravity. Swarms were composed of 3 micron polystyrene beads in either water or water with KCL (%). Two types of grains are used to simulate …


Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev Aug 2016

Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Efficient modeling of electromagnetic processes in optical and plasmonic metamaterials is important for enabling new and exciting ways to manipulate light for advanced applications. In this work, we put together a tool for numerical simulation of propagation of normally incident light through a nanostructured multilayer composite material. The user builds a unit cell of a given material layer-by-layer starting from a substrate up to a superstrate, splitting each layer further into segments. The segments are defined by width and material -- dielectric, metal or active medium. Simulations are performed with the finite difference time domain (FDTD) method. A database of …


Classifying Pattern Formation In Materials Via Machine Learning, Lukasz Burzawa, Shuo Liu, Erica W. Carlson Aug 2016

Classifying Pattern Formation In Materials Via Machine Learning, Lukasz Burzawa, Shuo Liu, Erica W. Carlson

The Summer Undergraduate Research Fellowship (SURF) Symposium

Scanning probe experiments such as scanning tunneling microscopy (STM) and atomic force microscopy (AFM) on strongly correlated materials often reveal complex pattern formation that occurs on multiple length scales. We have shown in two disparate correlated materials that the pattern formation is driven by proximity to a disorder-driven critical point. We developed new analysis concepts and techniques that relate the observed pattern formation to critical exponents by analyzing the geometry and statistics of clusters observed in these experiments and converting that information into critical exponents. Machine learning algorithms can be helpful correlating data from scanning probe experiments to theoretical models …


A Fast Model For The Simulation Of External Gear Pumps, Zechao Lu, Xinran Zhao, Andrea Vacca Aug 2016

A Fast Model For The Simulation Of External Gear Pumps, Zechao Lu, Xinran Zhao, Andrea Vacca

The Summer Undergraduate Research Fellowship (SURF) Symposium

External gear pump is an important category of positive displacement fluid machines used to perform the mechanical–hydraulic energy conversions in many fluid power applications. An efficient numerical simulation program is needed to simulate the system in order to provide a direction for design purpose. The model consists of a lumped parameter fluid dynamic model and a model that simulates the radial micro-motions of the gear’s axes of rotation. The system consists of a set of ordinary differential equations related to the conservation on mass of the internal control volumes of the pump, which are given by the tooth space volumes …


Probing Symmetry And Disorder Effects In The Fractional Quantum Hall States Of The Second Landau Level, Ethan I. Kleinbaum Aug 2016

Probing Symmetry And Disorder Effects In The Fractional Quantum Hall States Of The Second Landau Level, Ethan I. Kleinbaum

Open Access Dissertations

Electrons confined to two dimensions, cooled to cryogenic temperatures, and placed in a strong perpendicular magnetic field exhibit a set of ground states referred to as the fractional quantum Hall states (FQHS). The FQHSs forming in the region called the second Landau level are some of the most exciting states as several theories predict that they are very different from the well understood FQHS in the lowest Landau level. Nonetheless, the nature of these FQHSs continue to evade understanding. In this thesis, a unique ultra-low temperature setup is used to examine the FQHSs of the second Landau level in regimes …


Nanophotonics For Dark Materials, Filters, And Optical Magnetism, Mengren Man Aug 2016

Nanophotonics For Dark Materials, Filters, And Optical Magnetism, Mengren Man

Open Access Dissertations

Research on nanophotonic structures for three application areas is described, a near perfect optical absorber based on a graphene/dielectric stack, an ultraviolet bandpass filter formed with an aluminum/dielectric stack, and structures exhibiting homogenizable magnetic properties at infrared frequencies. The graphene stack can be treated as a effective, homogenized medium that can be designed to reflect little light and absorb an astoundingly high amount per unit thickness, making it an ideal dark material and providing a new avenue for photonic devices based on two-dimensional materials. Another material stack arrangement with thin layers of metal and insulator forms a multi-cavity filter that …


Exploring Spin-Transfer-Torque Devices And Memristors For Logic And Memory Applications, Zoha Pajouhi Aug 2016

Exploring Spin-Transfer-Torque Devices And Memristors For Logic And Memory Applications, Zoha Pajouhi

Open Access Dissertations

As scaling CMOS devices is approaching its physical limits, researchers have begun exploring newer devices and architectures to replace CMOS.

Due to their non-volatility and high density, Spin Transfer Torque (STT) devices are among the most prominent candidates for logic and memory applications. In this research, we first considered a new logic style called All Spin Logic (ASL). Despite its advantages, ASL consumes a large amount of static power; thus, several optimizations can be performed to address this issue. We developed a systematic methodology to perform the optimizations to ensure stable operation of ASL.

Second, we investigated reliable design of …


Two-Particle Correlation Studies In Heavy Ion Collisions At The Large Hadron Collider, Lingshan Xu Aug 2016

Two-Particle Correlation Studies In Heavy Ion Collisions At The Large Hadron Collider, Lingshan Xu

Open Access Dissertations

Results on two-particle angular correlations in pPb at [square root sNN] =5.02 TeV and PbPb collisions at [square root sNN] =2.76 TeV are reported. The long-range correlations in pseudorapidity (“ridge'') has been seen in various systems, including PbPb, pPb and pp systems. In this thesis, two-particle correlations in pPb collisions at nucleon-nucleon center-of-mass energy of 5.02 TeV are studied as a function of the pseudorapidity separation (Δ η) of the particle pair at small azimuthal angle separation (|Δ&phis;| < π/3). The correlations are decomposed into a jet component that dominates the short-range correlations (|Δη| < 1), and a component that persists at large Δη, which is the ridge. The ridge may be associated with collective behavior of the produced system, well …


A Dose Distribution Study Of Uranyl Nitrate In Zebrafish Using Liquid Scintillation And Passivated Implanted Planar Silicon Detectors, Lee A. Alleman Aug 2016

A Dose Distribution Study Of Uranyl Nitrate In Zebrafish Using Liquid Scintillation And Passivated Implanted Planar Silicon Detectors, Lee A. Alleman

Open Access Theses

Standard curves for a Perkin Elmer TriCarb 2800 liquid scintillation detector (LSC) and a Ludlum 3030p Passivated Implanted Planar Silicon detector have been developed and utilized for studying the dose distribution of depleted uranium (DU) within zebrafish. The DU source was crystallized uranyl nitrate (N2O8U•6H2O) solution, normally used for staining in electron microscopy with a manufactured average specific activity of 0.3 uCi/g. Zebrafish, both larvae and adults, were exposed to three different mass concentrations, dissected, dissolved and counted using an LSC. The counts were compared to the standard curve correlating the measured activity to that of the mass absorbed. It …


Students' Reasoning With Haptic Technologies: A Qualitative Study In The Electromagnetism Domain, Sadhana Balachandran Aug 2016

Students' Reasoning With Haptic Technologies: A Qualitative Study In The Electromagnetism Domain, Sadhana Balachandran

Open Access Theses

With abundant applications in the medical training and entertainment industry, haptic technology is slowly making its way into the realm of science education, particularly in conveying abstract and non-visible concepts. Electric field is one such abstract concept. Past studies have shown that learning concepts such as electric fields in a traditional classroom can be quite challenging since students have a hard time visualizing the phenomena and applying its effects to reason. Furthermore, these concepts are the building blocks for more complex concepts such as matter and molecular interactions. Visuo-haptic devices provide a great platform to enable students to visualize and …


Measurement Of The Upsilon(Ns) Cross Section At Cdf, Michael D. Meier Aug 2016

Measurement Of The Upsilon(Ns) Cross Section At Cdf, Michael D. Meier

Open Access Dissertations

Since the bound bb¯ system was first discovered, researchers have been trying to explain the production mechanism for quarkonium to learn more about this system. Several different theories try to describe quarkonium production, and while these theories agree with experimental measurements of production rates, theoretical predictions for quarkonium polarization vary. Careful measurement of the ϒ( nS) angular distribution along with the ϒ(nS) cross section can provide insight into the quarkonium production mechanism. This analysis measures the ϒ(nS) cross section and ϒ(1 S) polarization parameters.


Investigation Of Cellular Microenvironments And Heterogeneity With Biodynamic Imaging, Daniel Alexander Merrill Aug 2016

Investigation Of Cellular Microenvironments And Heterogeneity With Biodynamic Imaging, Daniel Alexander Merrill

Open Access Dissertations

Imaging of biological tissue in a relevant environment is critical to accurately assessing the effectiveness of chemotherapeutic agents in combatting cancer. Though many three-dimensional (3D) culture models exist, conventional in vitro assays continue to use two-dimensional (2D) cultures because of the difficulty in imaging through deep tissue. 3D tomographic imaging techniques exist and are being used in the development of 3D efficacy assays. However, most of these assays look at therapy endpoint (dead or living cancer cell count) and do not capture the dynamics of tissue response.

Biodynamic imaging (BDI) is a 3D tomographic imaging and assay technique that uses …


Localization And Delocalization In Two-Dimensional Quantum Percolation, Brianna S. Dillon Thomas Aug 2016

Localization And Delocalization In Two-Dimensional Quantum Percolation, Brianna S. Dillon Thomas

Open Access Dissertations

Quantum percolation is one of several disorder-only models that address the question of whether conduction, or more generally, delocalization, is possible in two dimensional disordered systems. Whether quantum percolation exhibits a delocalization-localization phase transition in two dimensions is an ongoing debate, but many recent studies point toward there being a delocalized phase at non-zero disorder, in contradiction to the behavior of the Anderson model, another disorder-only model. In this dissertation, I present my research on quantum percolation that shows a delocalized state is possible, both on isotropic lattices and on highly anisotropic lattices, and shows that the essential characteristics of …


Particle Modeling Of Non-Equilibrium Field Emission Driven Rf Microplasmas, Siva Sashank Tholeti Aug 2016

Particle Modeling Of Non-Equilibrium Field Emission Driven Rf Microplasmas, Siva Sashank Tholeti

Open Access Dissertations

Non-equilibrium microplasmas at atmospheric pressures have been investigated for active flow control, micropropulsion and electronic display applications to name a few. The operational voltages for these microplasmas are on the order of kilovolts. When the electric field at the electrodes reaches GV/m or tens of GV/m either due to reduced interelectrode spacing and surface irregularities or due to carefully designed nanostructures on the electrodes, quantum processes such as field emission and field ionization come into effect. These can potentially reduce the operational voltages of microplasma devices by an order of magnitude. Due to the rarefied and non-equilibrium nature of these …