Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Old Dominion University

Optics

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 72

Full-Text Articles in Physics

Optics Studies For Multipass Energy Recovery At Cebaf: Er@Cebaf, Isurumali Neththikumara Oct 2023

Optics Studies For Multipass Energy Recovery At Cebaf: Er@Cebaf, Isurumali Neththikumara

Physics Theses & Dissertations

Energy recovery linacs (ERLs), focus on recycling the kinetic energy of electron beam for the purpose of accelerating a newly injected beam within the same accelerating structure. The rising developments in the super conducting radio frequency technology, ERL technology has achieved several noteworthy milestones over the past few decades. In year 2003, Jefferson Lab has successfully demonstrated a single pass energy recovery at the CEBAF accelerator. Furthermore, they conducted successful experiments with IR-FEL demo and upgrades, as well as the UV FEL driver. This multi-pass, multi-GeV range energy recovery demonstration proposed to be carried out at CEBAF accelerator at Jefferson …


Experimental Investigation Of All-Optical Production Of Metastable Krypton, Joshua Carl Frechem May 2022

Experimental Investigation Of All-Optical Production Of Metastable Krypton, Joshua Carl Frechem

Physics Theses & Dissertations

Metastable production of noble gases requires significant energy due to their filled valence shells. These transitions from the ground state are in the vacuum ultraviolet and extreme ultraviolet, which are relatively inaccessible to lasers. This necessitates the use of either electron/ion bombardment via inefficient glow discharges or the use of high-power lasers and nonlinear processes. The all-optical production efficiency using these high-power lasers promises to be orders of magnitude higher than glow discharges, but far more costly. This work looks to improve all-optical production of metastable krypton (Kr*) through the use of a commercially available vacuum ultraviolet lamp with a …


Vertical Artifacts In High-Resolution Worldview-2 And Worldview-3 Satellite Imagery Of Aquatic Systems, Megan M. Coffer, Peter J. Whitman, Blake A. Schaeffer, Victoria Hill, Richard C. Zimmerman, Wilson B. Salls, Marie C. Lebrasse, David D. Graybill Jan 2022

Vertical Artifacts In High-Resolution Worldview-2 And Worldview-3 Satellite Imagery Of Aquatic Systems, Megan M. Coffer, Peter J. Whitman, Blake A. Schaeffer, Victoria Hill, Richard C. Zimmerman, Wilson B. Salls, Marie C. Lebrasse, David D. Graybill

OES Faculty Publications

Satellite image artefacts are features that appear in an image but not in the original imaged object and can negatively impact the interpretation of satellite data. Vertical artefacts are linear features oriented in the along-track direction of an image system and can present as either banding or striping; banding are features with a consistent width, and striping are features with inconsistent widths. This study used high-resolution data from DigitalGlobeʻs (now Maxar) WorldView-3 satellite collected at Lake Okeechobee, Florida (FL), on 30 August 2017. This study investigated the impact of vertical artefacts on both at-sensor radiance and a spectral index for …


The Aquatic Particle Number Quandry, Alexander B. Bochdansky, Huanqing Huang, Maureen H. Conte Jan 2022

The Aquatic Particle Number Quandry, Alexander B. Bochdansky, Huanqing Huang, Maureen H. Conte

OES Faculty Publications

Optical surveys of aquatic particles and their particle size spectra have become important tools in studies of light propagation in water, classification of water masses, and the dynamics of trophic interactions affecting particle aggregation and flux. Here, we demonstrate that typical settings used in image analysis vastly underestimate particle numbers due to the particle – gel continuum. Applying a wide range of threshold values to change the sensitivity of our detection system, we show that macrogels cannot be separated from more dense particles, and that a true particle number per volume cannot be ascertained; only relative numbers in relation to …


Artificial Intelligence And Machine Learning In Optical Information Processing: Introduction To The Feature Issue, Khan Iftekharuddin, Chrysanthe Preza, Abdul Ahad S. Awwal, Michael E. Zelinski Jan 2022

Artificial Intelligence And Machine Learning In Optical Information Processing: Introduction To The Feature Issue, Khan Iftekharuddin, Chrysanthe Preza, Abdul Ahad S. Awwal, Michael E. Zelinski

Electrical & Computer Engineering Faculty Publications

This special feature issue covers the intersection of topical areas in artificial intelligence (AI)/machine learning (ML) and optics. The papers broadly span the current state-of-the-art advances in areas including image recognition, signal and image processing, machine inspection/vision and automotive as well as areas of traditional optical sensing, interferometry and imaging.


Examining Melt Pond Dynamics And Light Availability In The Arctic Ocean Via High Resolution Satellite Imagery, Austin Wesley Abbott Jul 2021

Examining Melt Pond Dynamics And Light Availability In The Arctic Ocean Via High Resolution Satellite Imagery, Austin Wesley Abbott

OES Theses and Dissertations

As the Arctic experiences consequences of climate change, a shift from thicker, multi-year ice to thinner, first-year ice has been observed. First-year ice is prone to extensive pools of meltwater (“melt ponds”) forming on its surface, which enhance light transmission to the ocean. Changes in the timing and distribution of melt pond formation and associated increases in under-ice light availability are the primary drivers for seasonal progression of water column primary production and warming. Observations of melt pond development and distribution require meter scale resolution and have traditionally been limited to airborne images. However, recent advances in high spatial resolution …


Rapid Quantification Of Biofouling With An Inexpensive, Underwater Camera And Image Analysis, Matthew R. First, Scott C. Riley, Kazi Aminul Islam, Victoria Hill, Jiang Li, Richard C. Zimmerman, Lisa A. Drake Jan 2021

Rapid Quantification Of Biofouling With An Inexpensive, Underwater Camera And Image Analysis, Matthew R. First, Scott C. Riley, Kazi Aminul Islam, Victoria Hill, Jiang Li, Richard C. Zimmerman, Lisa A. Drake

Electrical & Computer Engineering Faculty Publications

To reduce the transport of potentially invasive species on ships' submerged surfaces, rapid-and accurate-estimates of biofouling are needed so shipowners and regulators can effectively assess and manage biofouling. This pilot study developed a model approach for that task. First, photographic images were collected in situ with a submersible, inexpensive pocket camera. These images were used to develop image processing algorithms and train machine learning models to classify images containing natural assemblages of fouling organisms. All of the algorithms and models were implemented in a widely available software package (MATLAB©). Initially, an unsupervised clustering model was used, and three …


Measurement Of The Photon Beam Asymmetry In ΓpK+Σ0 At EΓ = 8.5 Gev With Gluex, Nilanga Indrajie Wickramaarachchi Apr 2020

Measurement Of The Photon Beam Asymmetry In Γp → K+Σ0 At EΓ = 8.5 Gev With Gluex, Nilanga Indrajie Wickramaarachchi

Physics Theses & Dissertations

In this work the photon beam asymmetry Σ for the reaction γp K+ Σ0(1193) is measured using the GlueX experiment in Hall D at Jefferson Lab. The analysis used data that were collected using a linearly polarized photon beam in the energy range (8.2 - 8.8) GeV incident on a liquid hydrogen target. The beam asymmetries are measured as a function of the Mandelstam variable t and as a single value for the low u region. These are the first exclusive measurements of the photon beam asymmetry Σ in this reaction at energies above the baryon resonance …


In-Situ Gold-Ceria Nanoparticles: Superior Optical Fluorescence Quenching Sensor For Dissolved Oxygen, Nader Shehata, Ishac Kandas, Effat Samir Feb 2020

In-Situ Gold-Ceria Nanoparticles: Superior Optical Fluorescence Quenching Sensor For Dissolved Oxygen, Nader Shehata, Ishac Kandas, Effat Samir

Electrical & Computer Engineering Faculty Publications

Cerium oxide (ceria) nanoparticles (NPs) have been proved to be an efficient optical fluorescent material through generating visible emission (~530 nm) under violet excitation. This feature allowed ceria NPs to be used as an optical sensor via the fluorescence quenching Technique. In this paper, the impact of in-situ embedded gold nanoparticles (Au NPs) inside ceria nanoparticles was studied. Then, gold–ceria NPs were used for sensing dissolved oxygen (DO) in aqueous media. It was observed that both fluorescence intensity and lifetime were changed due to increased concentration of DO. Added gold was found to enhance the sensitivity of ceria to DO …


Special Section Guest Editorial: Machine Learning In Optics, Jonathan Howe, Travis Axtell, Khan Iftekharuddin Jan 2020

Special Section Guest Editorial: Machine Learning In Optics, Jonathan Howe, Travis Axtell, Khan Iftekharuddin

Electrical & Computer Engineering Faculty Publications

This guest editorial summarizes the Special Section on Machine Learning in Optics.


Collision Of Li2+ With Li(2s) And Li(2p): Differential And Total Ionization; Discrete Excitations; Elastic Scattering, And Total Cross Section, H.R.J. Walters, Colm T. Whelan Jan 2020

Collision Of Li2+ With Li(2s) And Li(2p): Differential And Total Ionization; Discrete Excitations; Elastic Scattering, And Total Cross Section, H.R.J. Walters, Colm T. Whelan

Physics Faculty Publications

The coupled pseudostate approximation (McGovern et al 2009 Phys. Rev. A 79 042707) has been applied to Li2+ + Li(2s, 2p0,±1) collisions at 16 MeV with emphasis on studying the fully differential ionization measurements of Ghanbari-Adivi et al in the azimuthal plane (2017 J. Phys. B: At. Mol. Opt. Phys. 50 215202). The states of the valence electron in the Li target are calculated using the model potential of Stein (1993 J. Phys. B: At. Mol. Opt. Phys. 26 2087). Altogether 164 states with angular momenta l = 0 to 9 are employed in …


Tunable-Focus Liquid Lens Through Charge Injection, Shizhi Qian, Wenxiang Shi, Huai Zheng, Zhaohui Liu Jan 2020

Tunable-Focus Liquid Lens Through Charge Injection, Shizhi Qian, Wenxiang Shi, Huai Zheng, Zhaohui Liu

Mechanical & Aerospace Engineering Faculty Publications

Liquid lenses are the simplest and cheapest optical lenses, and various studies have been conducted to develop tunable-focus liquid lenses. In this study, a simple and easily implemented method for achieving tunable-focus liquid lenses was proposed and experimentally validated. In this method, charges induced by a corona discharge in the air were injected into dielectric liquid, resulting in “electropressure” at the interface between the air and the liquid. Through a 3D-printed U-tube structure, a tunable-focus liquid lens was fabricated and tested. Depending on the voltage, the focus of the liquid lens can be adjusted in large ranges (−∞ to −9 …


Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson Oct 2019

Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson

Electrical & Computer Engineering Theses & Dissertations

Raman spectroscopy is a powerful analysis technique that has found applications in fields such as analytical chemistry, planetary sciences, and medical diagnostics. Recent studies have shown that analysis of Raman spectral profiles can be greatly assisted by use of computational models with achievements including high accuracy pure sample classification with imbalanced data sets and detection of ideal sample deviations for pharmaceutical quality control. The adoption of automated methods is a necessary step in streamlining the analysis process as Raman hardware becomes more advanced. Due to limits in the architectures of current machine learning based Raman classification models, transfer from pure …


Spectroscopy Of Neon For The Advanced Undergraduate Laboratory, H. C. Busch, M. B. Cooper, C. I. Sukenik Jan 2019

Spectroscopy Of Neon For The Advanced Undergraduate Laboratory, H. C. Busch, M. B. Cooper, C. I. Sukenik

Physics Faculty Publications

We describe a spectroscopy experiment, suitable for upper-division laboratory courses, that investigates saturated absorption spectroscopy and polarization spectroscopy in a neon discharge. Both experiments use nearly identical components, allowing students to explore both techniques in a single apparatus. Furthermore, because the wavelength of the laser is in the visible part of the spectrum (640 nm), the experiment is well-suited for students with limited experience in optical alignment. The labs nicely complement a course in atomic or plasma physics, provide students with the opportunity to gain important technical skills in the area of optics and lasers, and can provide an introduction …


Catalysis Of Stark-Tuned Interactions Between Ultracold Rydberg Atoms, A. L. Win, W. D. Williams, T. J. Carroll, C. I. Sukenik Sep 2018

Catalysis Of Stark-Tuned Interactions Between Ultracold Rydberg Atoms, A. L. Win, W. D. Williams, T. J. Carroll, C. I. Sukenik

Physics Faculty Publications

We have experimentally investigated a catalysis effect in the resonant energy transfer between ultracold 85Rb Rydberg atoms. We studied the time dependence of the process, 34p + 34p → 34s + 35s, and observed an enhancement of 34s state population when 34d state atoms are added. We have also performed numerical model simulations, which are in qualitative agreement with experiment and indicate that the enhancement arises from a redistribution of p-state atoms due to the presence of the d-state atoms.


Compensation Of Non-Linear Bandwidth Broadening By Laser Chirping In Thomson Sources, C. Maroli, V. Petrillo, I. Drebot, L, Serafini, B. Terzić, G. A. Krafft Aug 2018

Compensation Of Non-Linear Bandwidth Broadening By Laser Chirping In Thomson Sources, C. Maroli, V. Petrillo, I. Drebot, L, Serafini, B. Terzić, G. A. Krafft

Physics Faculty Publications

A new laser chirping prescription is derived by means of the phase-stationary method for an inci- dent Gaussian laser pulse in conjunction with a Li enard-Wiechert calculation of the scattered radia- tion flux and spectral brilliance. This particularly efficient laser chirp has been obtained using the electric field of the laser and for electrons and radiation on axis. The frequency modulation is some- what reduced with respect to that proposed in the previous literature, allowing the application of this procedure to lasers with larger values of the parameter a0. Numerical calculations have been performed using mildly focused and …


Characterization And Analysis Of Ultrathin Cigs Films And Solar Cells Deposited By 3-Stage Process, Grace Rajan, Krishna Aryal, Shankar Karki, Puruswottam Aryal, Robert W. Collins, Sylvain Marsillac May 2018

Characterization And Analysis Of Ultrathin Cigs Films And Solar Cells Deposited By 3-Stage Process, Grace Rajan, Krishna Aryal, Shankar Karki, Puruswottam Aryal, Robert W. Collins, Sylvain Marsillac

Electrical & Computer Engineering Faculty Publications

In view of the large-scale utilization of Cu(In,Ga)Se2 (CIGS) solar cells for photovoltaic application, it is of interest not only to enhance the conversion efficiency but also to reduce the thickness of the CIGS absorber layer in order to reduce the cost and improve the solar cell manufacturing throughput. In situ and real-time spectroscopic ellipsometry (RTSE) has been used conjointly with ex situ characterizations to understand the properties of ultrathin CIGS films. This enables monitoring the growth process, analyzing the optical properties of the CIGS films during deposition, and extracting composition, film thickness, grain size, and surface roughness which …


Analysis Of The Red And Green Optical Absorption Spectrum Of Gas Phase Ammonia, Nikolai F. Zobov, Phillip A. Coles, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Robert J. Hargreaves, Peter F. Bernath, Jonathan Tennyson, Sergei N. Yurchenko, Oleg L. Polyansky Jan 2018

Analysis Of The Red And Green Optical Absorption Spectrum Of Gas Phase Ammonia, Nikolai F. Zobov, Phillip A. Coles, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Robert J. Hargreaves, Peter F. Bernath, Jonathan Tennyson, Sergei N. Yurchenko, Oleg L. Polyansky

Chemistry & Biochemistry Faculty Publications

Room temperature NH3 absorption spectra recorded at the Kitt Peak National Solar Observatory in 1980 are analyzed. The spectra cover two regions in the visible: 15,200 - 15,700 cm-1 and 17,950 - 18,250 cm-1. These high overtone rotation-vibration spectra are analyzed using both combination differences and variational line lists. Two variational line lists were computed using the TROVE nuclear motion program: one is based on an ab initio potential energy surface (PES) while the other used a semi-empirical PES. Ab initio dipole moment surfaces are used in both cases. 95 energy levels with J = 1 …


Light Scattering From An Atomic Gas Under Conditions Of Quantum Degeneracy, V. M. Porozova, L. V. Gerasimov, M. D. Havey Jan 2018

Light Scattering From An Atomic Gas Under Conditions Of Quantum Degeneracy, V. M. Porozova, L. V. Gerasimov, M. D. Havey

Physics Faculty Publications

Elastic light scattering from a macroscopic atomic sample existing in the Bose-Einstein condensate phase reveals a unique physical configuration of interacting light and matter waves. However, the joint coherent dynamics of the optical excitation induced by an incident photon is influenced by the presence of incoherent scattering channels. For a sample of sufficient length the excitation transports as a polariton wave and the propagation Green's function obeys the scattering equation which we derive. The polariton dynamics could be tracked in the outgoing channel of the scattered photon as we show via numerical solution of the scattering equation for one-dimensional geometry. …


Effects Of Light Reflection On Spatial Visualization Ability And Implications For Engineering Technology Students, Petros Katsioloudis, Mildred Jones Jan 2018

Effects Of Light Reflection On Spatial Visualization Ability And Implications For Engineering Technology Students, Petros Katsioloudis, Mildred Jones

STEMPS Faculty Publications

Results from a number of studies indicate that the type of light generated by the reflection on the surface of different types of surfaces can influence the spatial visualization ability; however, research provides inconsistent results. Considering this, a quasi-experimental study was conducted to identify the existence of statistically significant effects on spatial visualization ability as measured by the Mental Cutting Test and Sectional View drawing ability due to the impacts of light reflection. In particular, the study compared three types of light reflection; mirror, specular and diffuse and whether a significant difference exists among engineering technology students. According to the …


R&D Of A High-Performance Dirc Detector For A Future Electron-Ion Collider, Stacey Lee Allison Jul 2017

R&D Of A High-Performance Dirc Detector For A Future Electron-Ion Collider, Stacey Lee Allison

Physics Theses & Dissertations

An Electron-Ion Collider (EIC) is proposed as the next big scientific facility to be built in the United States, costing over $1 billion in design and construction. Each detector concept for the electron/ion beam interaction point is integrated into a large solenoidal magnet. The necessity for excellent hadronic particle identification (pion/kaon/proton) in the barrel region of the solenoid has pushed research and development (R&D) towards a new, high-performance Detection of Internally Reflected Cherenkov light (DIRC) detector design. The passage of a high energy charged particle through a fused silica bar of the DIRC generates optical Cherenkov radiation. A large fraction …


New And Improved Infra-Red Absorption Cross Sections And Ace-Fts Retrievals Of Carbon Tetrachloride (Ccl4), Jeremy J. Harrison, Christopher D. Boone, Peter F. Bernath Jan 2017

New And Improved Infra-Red Absorption Cross Sections And Ace-Fts Retrievals Of Carbon Tetrachloride (Ccl4), Jeremy J. Harrison, Christopher D. Boone, Peter F. Bernath

Chemistry & Biochemistry Faculty Publications

Carbon tetrachloride (CCl4) is one of the species regulated by the Montreal Protocol on account of its ability to deplete stratospheric ozone. As such, the inconsistency between observations of its abundance and estimated sources and sinks is an important problem requiring urgent attention (Carpenter et al., 2014) [5]. Satellite remote-sensing has a role to play, particularly limb sounders which can provide vertical profiles into the stratosphere and therefore validate stratospheric loss rates in atmospheric models. This work is in two parts. The first describes new and improved high-resolution infra-red absorption cross sections of carbon tetrachloride/dry synthetic air over …


The Hitran2016 Molecular Spectroscopic Database, I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance Jan 2017

The Hitran2016 Molecular Spectroscopic Database, I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance

Chemistry & Biochemistry Faculty Publications

This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional …


Light Soaking Phenomena In Organic-Inorganic Mixed Halide Perovskite Single Crystals, Hye Ryung Byun, Dae Young Park, Hye Min Oh, Gon Namkoong, Mun Seok Jeong Jan 2017

Light Soaking Phenomena In Organic-Inorganic Mixed Halide Perovskite Single Crystals, Hye Ryung Byun, Dae Young Park, Hye Min Oh, Gon Namkoong, Mun Seok Jeong

Electrical & Computer Engineering Faculty Publications

Recently, organic inorganic mixed halide perovskite (MAPbX3; MA = CH3NH3+, X = Cl-, Br-, or I-) single crystals with low defect densities have been highlighted as candidate materials for high-efficiency photovoltaics and optoelectronics. Here we report the optical and structural investigations of mixed halide perovskite (MAPbBr3-xIx) single crystals. Mixed halide perovskite single crystals showed strong light soaking phenomena with light illumination conditions that were correlated to the trapping and detrapping events from defect sites. By systematic investigation with optical analysis, we found that the …


Forward Light Scattering In An Extended Sample Of Cold Atoms, Stetson Roof Aug 2016

Forward Light Scattering In An Extended Sample Of Cold Atoms, Stetson Roof

Physics Theses & Dissertations

We present results on the forward emitted light from a cold atomic sample of 87Rb. Specifically,we study single-photon superradiance which is characterized by a rapid decay faster than the single atom lifetime with the light preferentially emitted in the forward direction. Additionally, we report measurements on its counterpart, the cooperative Lamb shift. The results are interpreted using microscopic light scattering theory as well as techniques from classical optics. The comparison of the two analytical techniques provides a new perspectiveon what is meant by cooperative and collective scattering effects in cold atomic physics.


Emergence Of Collective Light Scattering In Atomic 87Rb Samples, Kasie Jean Kemp Jul 2016

Emergence Of Collective Light Scattering In Atomic 87Rb Samples, Kasie Jean Kemp

Physics Theses & Dissertations

Over the past half century, atomic ensembles have been used to create sensors, clocks, and quantum information systems. As these devices become more compact, and as the number of atoms increases to improve the sensitivity for detection, the atomic samples are increasing in density and optical depth. As such, the spectroscopic properties of the atomic media are modified due to interactions among the particles in the ensemble. We report investigation of near-resonance light scattering from a cold atomic sample of 87Rb. Initially prepared in a magneto-optical trap, the atoms are loaded into a far-off-resonance optical dipole trap (FORT) in which …


Evaluation Of Ray-Path Integrals In Geometrical Optics, John A. Adam, Michael Pohrivchak Jan 2016

Evaluation Of Ray-Path Integrals In Geometrical Optics, John A. Adam, Michael Pohrivchak

Mathematics & Statistics Faculty Publications

A brief summary of the physical context to this paper is provided, and the deviation angle undergone by an incident ray after k internal reflections inside a transparent unit sphere is formulated. For radially inhomogeneous spheres (in particular) this angle is related to a ray-path integral; an improper integral for which there are relatively few known exact analytical forms, even for simple refractive index profiles n(r). Thus for a linear profile the integral is a combination of incomplete elliptic integrals of the first and third kinds (though not all are as complicated as this). The ray-path integral is evaluated …


Evaluation Of Static Vs. Dynamic Visualizations For Engineering Technology Students And Implications On Spatial Visualization Ability: A Quasi-Experimental Study, Petros Katsioloudis, Daniel Dickerson, Vukica Jovanovic, Mildred Jones Jan 2015

Evaluation Of Static Vs. Dynamic Visualizations For Engineering Technology Students And Implications On Spatial Visualization Ability: A Quasi-Experimental Study, Petros Katsioloudis, Daniel Dickerson, Vukica Jovanovic, Mildred Jones

STEMPS Faculty Publications

The benefit of using static versus dynamic visualizations is a controversial one. Few studies have explored the effectiveness of static visualizations to those of dynamic visualizations, and the current state of the literature remains somewhat unclear. During the last decade there has been a lengthy debate about the opportunities for using animation in learning and instruction. More specifically it has been shown that dynamic visualizations often provide no advantages over static visualizations. If they had shown advantages, it was due to the fact that more information was available in the animated than in the static version. Given this result, the …


Enhancing The Insulation Of Wide-Range Spectrum In The Pva/N Thin Film By Doping Zno Nanowires, Yu-Chen Lin, Ching-Hsiang Vhen, Liang-Yih Chen, Shih-Chieh Hsu, Shizhi Qian Jan 2014

Enhancing The Insulation Of Wide-Range Spectrum In The Pva/N Thin Film By Doping Zno Nanowires, Yu-Chen Lin, Ching-Hsiang Vhen, Liang-Yih Chen, Shih-Chieh Hsu, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

In this study, polyvinyl alcohol/nitrogen (PVA/N) hybrid thin films doped with sharp-sword ZnO nanowires with insulating effect and wide-range spectrum are demonstrated for the first time. PVA/N doped ZnO nanocomposites were developed by blending PVA and N-doped ZnO nanowires in water at room temperature. Measurements from the field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Raman, and photoluminescence emission (PL) spectra of the products show that nitrogen is successfully doped into the ZnO wurtzite crystal lattice. In addition, the refractive index of PVA/N doped ZnO hybrid thin films can be controlled by varying the doped ZnO nanowires under different …


Optical And Hybrid Imaging And Processing For Big Data Problems, Khan Iftekharuddin, Abdul A. S. Awwal, S. Susan Young, Ghaleb M. Abdulla Jan 2014

Optical And Hybrid Imaging And Processing For Big Data Problems, Khan Iftekharuddin, Abdul A. S. Awwal, S. Susan Young, Ghaleb M. Abdulla

Electrical & Computer Engineering Faculty Publications

(First paragraph) The scientific community has been dealing with big data for a long time. Due to advancement in sensing, networking, and storage technology, other domains such as business, health, and social media followed. Data are considered the gold of the 21st century and are being collected, stored, and analyzed at a rapid pace. The amount of data being collected creates a compelling case for investing in hardware and software research to support generating even more data from new sensors and with better quality. It also creates a compelling case for investing in research and development of new hardware and …