Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Engineering

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 105

Full-Text Articles in Physics

An Accurate And Computationally Efficient Method For Battery Capacity Fade Modeling, D. M. Ajiboye, Jonathan W. Kimball, R.(Robert) G. Landers, John (T.) Park Mar 2022

An Accurate And Computationally Efficient Method For Battery Capacity Fade Modeling, D. M. Ajiboye, Jonathan W. Kimball, R.(Robert) G. Landers, John (T.) Park

Electrical and Computer Engineering Faculty Research & Creative Works

The Industry Demand for Accurate and Fast Algorithms that Model Vital Battery Parameters, E.g., State-Of-Health, State-Of-Charge, Pulse-Power Capability, is Substantial. One of the Most Critical Models is Battery Capacity Fade. the Key Challenge with Physics-Based Battery Capacity Fade Modeling is the High Numerical Cost in Solving Complex Models. in This Study, an Efficient and Fast Model is Presented to Capture Capacity Fade in Lithium-Ion Batteries. Here, the High-Order Chebyshev Spectral Method is Employed to Address the Associated Complexity with Physics-Based Capacity Fade Models. its Many Advantages, Such as Low Computational Memory, High Accuracy, Exponential Convergence, and Ease of Implementation, Allow …


Particle Swarm Optimization For Critical Experiment Design, Cole Michael Kostelac Jan 2022

Particle Swarm Optimization For Critical Experiment Design, Cole Michael Kostelac

Masters Theses

“Critical experiments are used by nuclear data evaluators and criticality safety engineers to validate nuclear data and computational methods. Many of these experiments are designed to maximize the sensitivity to a certain nuclide-reaction pair in an energy range of interest. Traditionally, a parameter sweep is conducted over a set of experimental variables to find a configuration that is critical and maximally sensitive. As additional variables are added, the total number of configurations increases exponentially and quickly becomes prohibitively computationally expensive to calculate, especially using Monte Carlo methods.

This work presents the development of a particle swarm optimization algorithm to design …


Effects Of Vacancies And Electron Temperature On The Electron Phonon Coupling In Cubic Silicon Carbide And Their Connection To The Inelastic Thermal Spike, Salah Al-Smairat Jan 2022

Effects Of Vacancies And Electron Temperature On The Electron Phonon Coupling In Cubic Silicon Carbide And Their Connection To The Inelastic Thermal Spike, Salah Al-Smairat

Doctoral Dissertations

“The electron-phonon interaction is an important interaction in many solids as it influences transport phenomena and related quantities such as the electrical and thermal conductivities, especially in nuclear and space applications. The importance of the electron-phonon interaction in primary damage production in 3C-SiC is the subject of this research.

The electron-phonon coupling factor was calculated using a hybrid Density Functional Perturbation Theory - Classical Electron Gas model. The coupling factor was calculated as a function of electron temperature in pristine and defective 3C-SiC, and relaxed defective cells. The electron-phonon coupling is found to depend strongly on the electronic temperature and …


Numerical Investigations Of 2-D Magnetic Nozzles On Pulsed Plasma Plumes, Joshua Daniel Burch Jan 2022

Numerical Investigations Of 2-D Magnetic Nozzles On Pulsed Plasma Plumes, Joshua Daniel Burch

Masters Theses

"This research presents studies of a novel type of magnetic nozzle that allows for three-dimensional (3-D) steering of a plasma plume. Numerical simulations were performed using Tech-X's USim® software to quantify the nozzle's capabilities. A2-D planar magnetic nozzle was applied to plumes of a nominal pulsed inductive plasma (PIP) source with discharge parameters similar to those of Missouri S&T's Missouri Plasmoid Experiment (MPX). Argon and xenon plumes were considered. Simulations were verified and validated through a mesh convergence study as well as comparison with available experimental data. Periodicity was achieved over the simulation run time and phase angle samples were …


Fiber Optic Sensors For Industry And Military Applications, Yiyang Zhuang Jan 2021

Fiber Optic Sensors For Industry And Military Applications, Yiyang Zhuang

Doctoral Dissertations

"Fiber optic sensors (FOSs) have been widely used for measuring various physical and chemical measurands owing to their unique advantages over traditional sensors such as small size, high resolution, distributed sensing capabilities, and immunity to electromagnetic interference. This dissertation focuses on the development of robust FOSs with ultrahigh sensitivity and their applications in industry and military areas.

Firstly, novel fiber-optic extrinsic Fabry-Perot interferometer (EFPI) inclinometers for one- and two-dimensional tilt measurements with 20 nrad resolution were demonstrated. Compared to in-line fiber optic inclinometers, an extrinsic sensing motif was used in our prototype inclinometer. The variations in tilt angle of the …


A Simple Background Elimination Method For Miniaturized Fiber-Optic Raman Probe, Bohong Zhang Jan 2021

A Simple Background Elimination Method For Miniaturized Fiber-Optic Raman Probe, Bohong Zhang

Masters Theses

"Raman scattering is called a photonic - molecular interaction based on the kinetic model of the analytic. Due to the uniqueness of the Raman scattering technique, it can provide a unique fingerprint signal for molecular recognition. However, a serious challenge often encountered in Raman measurement comes from the requirements of fast, real-time remote sensing, background fluorescence suppression, and micro-environmental detection.

A new Miniaturized Fiber-Optic Raman Probe (MFORP) for Raman spectroscopy, used especially for eliminating background fluorescence and enhancing sampling, is presented. Its main purpose is to provide an overview of excellent research on the detection of very small substances and …


Semi-Empirical Modeling Of Liquid Carbon's Containerless Solidification, Philip C. Chrostoski Jan 2021

Semi-Empirical Modeling Of Liquid Carbon's Containerless Solidification, Philip C. Chrostoski

Doctoral Dissertations

“Elemental carbon has important structural diversity, ranging from nanotubes through graphite to diamond. Previous studies of micron-size core/rim carbon spheres extracted from primitive meteorites suggest they formed around such stars via the solidification of condensed carbon-vapor droplets, followed by gas-to-solid carbon coating to form the graphite rims. Similar core/rim particles result from the slow cooling of carbon vapor in the lab. The long-range carbon bond-order potential was used to computationally study liquid-like carbon in (1.8 g/cm3) periodic boundary (tiled-cube supercell) and containerless (isolated cluster) settings. Relaxations via conjugate-gradient and simulated-annealing nucleation and growth simulations using molecular dynamics were …


A Compact Wavelength Meter Using A Multimode Fiber, Ogbole Collins Inalegwu Jan 2021

A Compact Wavelength Meter Using A Multimode Fiber, Ogbole Collins Inalegwu

Masters Theses

“Wavelength meters are very important for precision measurements of both pulses and continuous-wave optical sources. Conventional wavelength meters employ gratings, prisms, interferometers, and other wavelength-sensitive materials in their design. Here, we report a simple and compact wavelength meter based on a section of multimode fiber and a camera. The concept is to correlate the multimodal interference pattern (i.e., speckle pattern) at the end-face of a multimode fiber with the wavelength of the input lightsource. Through a series of experiments, specklegrams from the end face of a multimode fiber as captured by a charge-coupled device (CCD) camera were recorded; the images …


Modification Of The Optical Response Of Alpha Quartz Via The Deposition Of Gold Nanoparticles In Etched Ion Tracks, Maria C. Garcia Toro Jan 2020

Modification Of The Optical Response Of Alpha Quartz Via The Deposition Of Gold Nanoparticles In Etched Ion Tracks, Maria C. Garcia Toro

Doctoral Dissertations

”This study addresses the experimental methods used to develop and characterize plasmonic devices capable of modifying the optical response of alpha quartz via the deposition of gold nanoparticles in etched ion tracks. In the first part of the research, the microstructural characterization of latent and etched ion tracks produced in alpha quartz (α-SiO2) is presented. Single crystals of α-SiO2 were irradiated with two highly energetic ions to different nominal fluences. As expected, the morphology of the resulting ion tracks depends on the energy of the incident ion and their stopping powers within the target material. Subsequent chemical …


Characterization Of Neutron Irradiated Accident Tolerant Nuclear Fuel Cladding Silicon Carbide & Radiation Detector Deadtime, Bader Almutairi Jan 2020

Characterization Of Neutron Irradiated Accident Tolerant Nuclear Fuel Cladding Silicon Carbide & Radiation Detector Deadtime, Bader Almutairi

Doctoral Dissertations

“In part I, the pulse shape characteristics generated by a Geiger Muller (GM) detector and recorded by an oscilloscope manually, were investigated. The objective of part I was (1) to find a correlation between pulse shape and the operating voltage; and (2) to assess if pulse shape properties followed distinct patterns comparable to detector deadtime findings reported by a previous study. It was observed that (1) there is a strong correlation between pulse shape and operating voltage, and (2) pulse shape falls in three distinct regions similar to detector deadtime. Furthermore, parts II and III are companions and share the …


Characterization Of A Plasma Source Simulating Solar Wind Plasma In A Vacuum Chamber, Blake Anthony Folta Jan 2020

Characterization Of A Plasma Source Simulating Solar Wind Plasma In A Vacuum Chamber, Blake Anthony Folta

Masters Theses

"The United States has set an aggressive time line to not only return to the Moon, but also to establish a sustained human presence. In the Apollo missions dust was a significant factor, but the duration of those missions was short so dust and surface charging were problems, but they did not pose an immediate threat. For a long-term mission, these problems instead become incredibly detrimental. Because of this, research needs to be conducted to investigate these phenomena so that mitigation techniques can be developed and tested. To this end, this thesis serves to demonstrate the Gas and Plasma Dynamics …


Magnetic Control Of Transport Of Particles And Droplets In Low Reynolds Number Shear Flows, Jie Zhang Jan 2020

Magnetic Control Of Transport Of Particles And Droplets In Low Reynolds Number Shear Flows, Jie Zhang

Doctoral Dissertations

“Magnetic particles and droplets have been used in a wide range applications including biomedicine, biological analysis and chemical reaction. The manipulation of magnetic microparticles or microdroplets in microscale fluid environments is one of the most critical processes in the systems and platforms based on microfluidic technology. The conventional methods are based on magnetic forces to manipulate magnetic particles or droplets in a viscous fluid.

In contrast to conventional magnetic separation method, several recent experimental and theoretical studies have demonstrated a different way to manipulate magnetic non-spherical particles by using a uniform magnetic field in the microchannel. However, the fundamental mechanism …


Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib Jan 2019

Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib

Doctoral Dissertations

"The main focus of this work is to use machine learning and data mining techniques to address some challenging problems that arise from nuclear data. Specifically, two problem areas are discussed: nuclear imaging and radiation detection. The techniques to approach these problems are primarily based on a variant of Artificial Neural Network (ANN) called Convolutional Neural Network (CNN), which is one of the most popular forms of 'deep learning' technique.

The first problem is about interpreting and analyzing 3D medical radiation images automatically. A method is developed to identify and quantify deformable image registration (DIR) errors from lung CT scans …


Development Of A Switchable Radioisotope Generator, Kyle Mitchell Paaren Jan 2019

Development Of A Switchable Radioisotope Generator, Kyle Mitchell Paaren

Doctoral Dissertations

The Switchable Radioisotope Generator utilizes alpha-induced reactions to produce a combination of photons, neutrons, and protons with varying fluxes dependent on target materials and source geometry. The activity/strength of the secondary radiation is further controlled by manipulating the number of alpha particles that can interact with the target material(s). Analytical equations were solved to confirm secondary radiation production from target materials using average cross sections from TENDL data. TENDL and JENDL data was confirmed by analytically solving for the total alpha-induced cross sections. This information was used to produce the provisional and utility Patent No: US20190013109A1. TENDL data was then …


Investigating Blast Fume Propagation, Concentration And Clearance In Underground Mines Using Computational Fluid Dynamics (Cfd), Raymond Ninnang Tiile Jan 2019

Investigating Blast Fume Propagation, Concentration And Clearance In Underground Mines Using Computational Fluid Dynamics (Cfd), Raymond Ninnang Tiile

Doctoral Dissertations

"Blasting activities using standard industry explosives is an essential component of underground hard rock mining operations. Blasting operations result in the release of noxious gases, presenting both safety and productivity threats. Overestimation of post-blast re-entry time results in production losses, while underestimation leads to injuries and fatalities. Research shows that most underground mines simply standardize post-blast re-entry times based on experiences and observations. Few underground mines use theoretical methods for calculating post-blast re-entry time. These theoretical methods, however, are unable to account for the variations in the blasting conditions. Literature review shows that: (i) there is currently no means of …


Characterization Of A Green Electric Solid Propellant For Electric Propulsion, Matthew Scott Glascock Jan 2019

Characterization Of A Green Electric Solid Propellant For Electric Propulsion, Matthew Scott Glascock

Doctoral Dissertations

"Electric solid propellants are advanced solid chemical rocket propellants that can be controlled (ignited, throttled and extinguished) through the application and removal of an electric current. These propellants are also being considered for use in ablative pulsed plasma thruster and multimode systems. In this work, the behavior and performance of a novel green electric solid propellant operating in an electrothermal ablation-fed pulsed plasma thruster was investigated. Using an inverted pendulum micro-Newton thrust stand, the impulse bit and specific impulse of the device using the electric solid propellant were measured for short-duration and long-duration runs to end-of-life, at energy levels of …


Ferrite Characterization Techniques & Particle Simulations For Semiconductor Devices, Nicholas Erickson Jan 2019

Ferrite Characterization Techniques & Particle Simulations For Semiconductor Devices, Nicholas Erickson

Doctoral Dissertations

"This dissertation is divided into three papers, covering two major topics. The first topic, techniques for ferrite characterization, is discussed over the course of two papers. The second topic, particle simulations for semiconductor devices, is discussed in the last paper. In the first paper, the method for extracting permeability from ferrite materials is discussed for the Keysight 16454A permeability extraction fixture, where the ferrite material to be characterized is assumed to be homogeneous. Then the method is updated to account for layered materials. The updated method is verified through full-wave simulations. In the second paper, a planar printed circuit board …


Modulated Photothermal Radiometry: Detector Sensitivity Study And Experimental Setup, Jessica Nicole Seals Jan 2018

Modulated Photothermal Radiometry: Detector Sensitivity Study And Experimental Setup, Jessica Nicole Seals

Masters Theses

"This thesis outlines the development of a system used for determining the surface thermal diffusivity of both non-irradiated and irradiated materials. The motivation for this work is to establish a modulated photothermal radiometry (PTR) system on the campus of Missouri University of Science and Technology. One of the main efforts described in this thesis is the design and construction of the physical apparatus. Along the way, it was necessary to perform a detailed sensitivity analysis of the system to determine whether the expected signal emitted from the sample falls within the bounds of detectivity for the HgCdTe (MCT) detector used …


Customized Multi-Group Cross Section Generation With Njoy For Discrete Ordinates Computed Tomography And Radiography Simulation, Steven Michael Wagstaff Jan 2018

Customized Multi-Group Cross Section Generation With Njoy For Discrete Ordinates Computed Tomography And Radiography Simulation, Steven Michael Wagstaff

Masters Theses

"The purpose of this work was to explore the creation of photoatomic multi-group cross section libraries to be used with a software package DOCTORS (Discrete Ordinates Computed TOmography and Radiography Simulator). This software solves the linear Boltzmann equation using the discrete ordinates method [1]. To create these libraries, NJOY2016 was used, creating both fine and broad energy multi-group cross section files. The cross section's accuracy was tested against an equivalent Monte Carlo simulation using MCNP6.

Two simulation geometries were used. The first, a cylindrical water phantom with a single source projection placed in front, simulating an X-ray radiography. The second …


Developing Computational Models For Pulsed-Inductive Plasma Formation, Zachary Aaron Gill Jan 2018

Developing Computational Models For Pulsed-Inductive Plasma Formation, Zachary Aaron Gill

Masters Theses

"Pulsed-inductive discharges are a common method of producing a plasma. They provide a mechanism for quickly and efficiently generating a large volume of plasma for rapid use and are seen in applications including propulsion, fusion power, and high-power lasers. However, some common designs see a delayed response time due to the plasma forming when the magnitude of the magnetic field in the device is at a minimum. New designs are difficult to evaluate due to the amount of time needed to construct a new geometry and the high monetary cost of changing the power generation circuit. To more quickly evaluate …


Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher L. Carr Jan 2018

Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher L. Carr

Doctoral Dissertations

"Recent efforts have demonstrated confinement in porous scaffolds at the nanoscale can alter the hydrogen sorption properties of metal hydrides, though not to an extent feasible for use in onboard hydrogen storage applications, proposing the need for a method allowing further modifications. The work presented here explores how the functionalization of nanoporous carbon scaffold surfaces with heteroatoms can modify the hydrogen sorption properties of confined metal hydrides in relation to non-functionalized scaffolds (FS). Investigations of nanoconfined LiBH4 and NaAlH4 indicate functionalizing the carbon scaffold surface with nitrogen can shift the activation energy of hydrogen desorption in excess of …


Design And Characterization Of Multi-Spectral Underwater Beam-Port For Pool-Type Research Reactors, Meshari Mesfer Alqahtani Jan 2018

Design And Characterization Of Multi-Spectral Underwater Beam-Port For Pool-Type Research Reactors, Meshari Mesfer Alqahtani

Doctoral Dissertations

“The beam-port is a cardinal facility at research reactors necessary for dry irradiation, testing and measurement experiments. The Missouri University of Science and Technology Reactor (MSTR) is one such reactor with a beam-port. Installation of additional beam-port in such reactor facilities can be prohibitive. A novel remedy to this is an underwater beam-port for pool-type reactors. The design and characterization of a conceptual underwater multi-spectral beam-port for neutron and gamma fluxes were completed for the MSTR. The neutron spectra from the MSTR were simulated using the Monte Carlo N-particle (MCNP). The determined neutron spectra were experimentally validated using SAND-II. The …


Characterization Of The Cylinderical Split Internal-Loop Photobioreactor With Scenedesmus Microalgae: Advanced Culturing, Modeling, And Hydrodynamics, Laith S. Sabri Jan 2018

Characterization Of The Cylinderical Split Internal-Loop Photobioreactor With Scenedesmus Microalgae: Advanced Culturing, Modeling, And Hydrodynamics, Laith S. Sabri

Doctoral Dissertations

"Microalgae are fast growing photoynthetic microorganisms and it have very wide range of industrial applications such as biofuels and wastewater treatment. These cells can be grown in a wide variety of systems ranging from open culture systems (e.g., ponds) to closed culture systems of photobioreactor (e.g., airlift). The open culture systems exist in the external environment, and hence, are not intrinsically controllable. However, the microalgae production in enclosed photobioreactors faces prohibitively high production costs with special difficulty in reactor design and scale-up. The light availability and utilization efficiency in the photobioreactor in terms of design and scale-up consider as the …


Correlation Between Delay Time And Measured Concentration And Concentration Uncertainty By Neutron Activation Analysis, James Thomas Seman Jan 2018

Correlation Between Delay Time And Measured Concentration And Concentration Uncertainty By Neutron Activation Analysis, James Thomas Seman

Doctoral Dissertations

"For the last several decades, it has been apparent that new methods of identifying explosives can help investigators trace their origins. One way to identify an explosive is through the use of taggants: materials added to a product that encodes information about the product such as when it was manufactured.

This research investigates the survivability of a new identification taggant called the Nuclear Barcode that overcomes some of the downfalls that have been identified in prior taggants. The Nuclear Barcode encodes information as a unique combination of concentrations of rare earths (Ho, Eu, Sm, Lu, and Dy) and precious metals …


Modeling And Characterization Of Thermo-Oxidative Behavior Of Bismaleimide Composites, Rafid Muhammad Hussein Jan 2018

Modeling And Characterization Of Thermo-Oxidative Behavior Of Bismaleimide Composites, Rafid Muhammad Hussein

Doctoral Dissertations

"High-temperature polymer matrix composites (HTPMCs) are susceptible to thermo-oxidation, which accelerates the composites' degradation and reduces the service life. Mechanical properties of HTPMCs deteriorate due to coupled thermo-oxidation and cross-linking mechanisms. Bismaleimides (BMIs) are commonly used high-temperature resins for aerospace applications. This work presents the viability of using experimental weight loss to model the spatial distribution of oxidation when the oxidized polymer matrix is not discernible. Three tasks are introduced: (1) Anisotropic oxidation prediction using optimized weight loss behavior of bismaleimide composites, (2) A multi-scale modeling of thermo-oxidative effects on the flexural behavior of cross-ply bismaleimide composites, and (3) Thermo-oxidative …


A Mathematical Model And Numerical Simulations Of Redox Electrochemical Systems With Mhd And Natural Convection, Kakkattukuzhy M. Isaac, Fangping Yuan Aug 2017

A Mathematical Model And Numerical Simulations Of Redox Electrochemical Systems With Mhd And Natural Convection, Kakkattukuzhy M. Isaac, Fangping Yuan

Collaborative Research: Actively Controllable Microfluidics with Film-Confined Redox-Magnetohydrodynamics -- Video and Data

A comprehensive mathematical model for redox electrochemical systems with magnetohydrodynamics (MHD) and natural convection are presented. The model is based on density changes in isothermal systems that accompany redox reaction at the electrode due to supporting electrolyte ions migrating into and out of the diffusion layer to satisfy electroneutrality. Numerical simulations have been performed for an axisymmetric, milli-electrode electrochemical cell with gravity directed along the axis in both directions to investigate the effect of the electrode orientation with respect to gravity. Results show that natural convection is significant in both cases, with the maximum velocity being an order of magnitude …


Natural Convection In Redox Electrochemistry: Model, Simulation And Experiments, Fangping Yuan, Kakkattukuzhy M. Isaac Jun 2017

Natural Convection In Redox Electrochemistry: Model, Simulation And Experiments, Fangping Yuan, Kakkattukuzhy M. Isaac

Collaborative Research: Actively Controllable Microfluidics with Film-Confined Redox-Magnetohydrodynamics -- Video and Data

No abstract provided.


A Study Of The Potential Applications Of Am241, And Determining The Feasibility Of Using Gamma Spectroscopy For Future Physical Validation, Eric A. Feissle Jan 2017

A Study Of The Potential Applications Of Am241, And Determining The Feasibility Of Using Gamma Spectroscopy For Future Physical Validation, Eric A. Feissle

Masters Theses

“Am241 is typically produced via Pu241 decay in a uranium fueled reactor. Presence of Am241 can be used as the age estimation tool for spent fuel, which is a focus of this thesis along with the interest of the measurement and the ratio of production rates of Am241’s activation products; Americium-242 and its first excited state of Americium-242m. MCNP models of the core and BEGe 3825 detector were built. These models were compared with established and physical measurements of gamma/x-ray standards that were available at the reactor. Thermal fluxes at 200 kW for potential foils centered in the source holder …


Dirac Surface States Of Magnetic Topological Insulators, Seng Huat Lee Jan 2017

Dirac Surface States Of Magnetic Topological Insulators, Seng Huat Lee

Doctoral Dissertations

"Magnetic topological insulator (TI) has been theoretically proposed to be a platform for inducing magnetic monopole and exhibit fascinating quantum phenomena, whereas topological superconductor can host Majorana fermions, particles that are their own antiparticles, which can be manipulated for topological quantum computing. In this dissertation, we experimentally demonstrated that by intercalation of different transition metals in the van der Waals gaps of Bi2Se3 TI, magnetism and even superconductivity can be induced. In FexBi2Se3, antiferromagnetism is induced with a transition temperature at ~ 100 K. Coexistence of the Dirac surface state with …


Natural Convection And Forced Convection Model Based On Electroneutrality And Migration In Redox Mhd Systems, Fangping Yuan, Kakkattukuzhy M. Isaac Oct 2016

Natural Convection And Forced Convection Model Based On Electroneutrality And Migration In Redox Mhd Systems, Fangping Yuan, Kakkattukuzhy M. Isaac

Collaborative Research: Actively Controllable Microfluidics with Film-Confined Redox-Magnetohydrodynamics -- Video and Data

No abstract provided.