Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Iowa State University

Density functional theory

2016

Articles 1 - 2 of 2

Full-Text Articles in Physics

Adsorption Of Dysprosium On The Graphite (0001) Surface: Nucleation And Growth At 300 K, Emma J. Kwolek, Huaping Lei, Ann Lii-Rosales, Mark Wallingford, Yinghui Zhou, Cai-Zhuang Wang, Michael C. Tringides, James W. Evans Dec 2016

Adsorption Of Dysprosium On The Graphite (0001) Surface: Nucleation And Growth At 300 K, Emma J. Kwolek, Huaping Lei, Ann Lii-Rosales, Mark Wallingford, Yinghui Zhou, Cai-Zhuang Wang, Michael C. Tringides, James W. Evans

Physics and Astronomy Publications

We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison with ...


Comparison Of S-Adsorption On (111) And (100) Facets Of Cu Nanoclusters, Jeffrey S. Boschen, Jiyoung Lee, Theresa L. Windus, James W. Evans, Patricia A. Thiel, Da-Jiang Liu Oct 2016

Comparison Of S-Adsorption On (111) And (100) Facets Of Cu Nanoclusters, Jeffrey S. Boschen, Jiyoung Lee, Theresa L. Windus, James W. Evans, Patricia A. Thiel, Da-Jiang Liu

Physics and Astronomy Publications

In order to gain insight into the nature of chemical bonding of sulfur atoms on coinage metal surfaces, we compare the adsorption energy and structural parameters for sulfur at four-fold hollow (4fh) sites on (100) facets and at three-fold hollow (3fh) sites on (111) facets of Cu nanoclusters. Consistent results are obtained from localized atomic orbital and plane-wave based density functional theory using the same functionals. PBE and its hybrid counterpart (PBE0 or HSE06) also give similar results. 4fh sites are preferred over 3fh sites with stronger bonding by ∼0.6 eV for nanocluster sizes above ∼280 atoms. However, for ...