Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Iowa State University

Density functional theory

Ames Laboratory Accepted Manuscripts

Engineering

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

The Crystal Facet-Dependent Electrochemical Performance Of Tio2 Nanocrystals For Heavy Metal Detection: Theoretical Prediction And Experimental Proof, Jianjun Liao, Fan Yang, Cai-Zhuang Wang, Shiwei Lin May 2018

The Crystal Facet-Dependent Electrochemical Performance Of Tio2 Nanocrystals For Heavy Metal Detection: Theoretical Prediction And Experimental Proof, Jianjun Liao, Fan Yang, Cai-Zhuang Wang, Shiwei Lin

Ames Laboratory Accepted Manuscripts

Tailored design/fabrication of electroanalytical materials with highly-active exposed crystal planes is of great importance for the development of electrochemical sensing. In this work, combining experimental and theoretical efforts, we reported a facile strategy to fabricate TiO2 nanocrystals with tunable electrochemical performance for heavy metal detection. Density functional theory (DFT) calculations indicated that TiO2 (001) facet showed relative larger adsorption energy and lower diffusion energy barrier toward heavy metal ions, which is favorable for obtaining better electrochemical stripping behaviors. Based on this prediction, a series of TiO2 nanocrystals with different ratios of exposed (001) and (101) facets were synthesized. Electrochemical ...


Growth And Characterization Of Baznga, Na Hyun Jo, Qisheng Lin, Udhara S. Kaluarachchi, William R. Meier, Soham Manni, Savannah S. Downing, Anna E. Böhmer, Tai Kong, Yang Sun, Valentin Taufour, Cai-Zhuang Wang, Kai-Ming Ho, Sergey L. Bud’Ko, Paul C. Canfield Jan 2017

Growth And Characterization Of Baznga, Na Hyun Jo, Qisheng Lin, Udhara S. Kaluarachchi, William R. Meier, Soham Manni, Savannah S. Downing, Anna E. Böhmer, Tai Kong, Yang Sun, Valentin Taufour, Cai-Zhuang Wang, Kai-Ming Ho, Sergey L. Bud’Ko, Paul C. Canfield

Ames Laboratory Accepted Manuscripts

We report the growth, structure and characterization of BaZnGa, identifying it as the sole known ternary compound in the Ba–Zn–Ga system. Single crystals of BaZnGa can be grown out of excess Ba–Zn and adopt a tI36 structure type. There are three unique Ba sites and three M = Zn/Ga sites. Using DFT calculations we can argue that whereas one of these three M sites is probably solely occupied by Ga, the other two M sites, most likely, have mixed Zn/Ga occupancy. Temperature-dependent resistivity and magnetization measurements suggest that BaZnGa is a poor metal with no electronic ...